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Algorithm of migration MG(F-K) in orthorhombic medium

This article presents a description of properties of anisotropic orthorhombic medium by means of motion equa-
tions. This type of medium may be, in its relatively simple variant, a combination of transversely isotropic medium of 
vertical axis of symmetry, i.e. VTI and the system of parallel crevices and cracks located in vertical plain. Therefore, 
the orthorhombic model may be a combination of VTI model and HTI (Horizontal Transversely Isotropy) [7] (Fig. 1). 
This kind of medium is a significantly better approximation of reality than model HTI, although it must still be treated 
as a stage in searching for effective tools describing an azimuthal anisotropic model.

Decomposition of a complex orthorhombic model combined with definition of directions of situation and inclina-
tion of the plane of the cracks is an essential task in oil prospecting, which allows to settle several problems concern-
ing hydrodynamics of deposit fluids and construction of deposit reservoirs. Alternatively, an orthorhombic model may 
function as a combination of model VTI and HTI – systems of complex internal anisotropy. In the article two cases of 
measurements of the wavefield will be considered along the symmetry axis; when the symmetry axis is perpendicular 
and when it is parallel to the lamination (cracking) plains. In both cases, appropriate motion equations will be devel-
oped and dispersion relations in order to determine vertical wavenumbers in function of horizontal wavenumber and 
anisotropic parameters. The mentioned vertical wavenumbers will be used in construction of algorithms MG(F-K) of 
migration functioning in dual domains: the wavenumbers (K) and frequency (F) and space-time – domain (t-x) [4, 5].

Introduction

Basic equations

We will consider a medium as a combination of VTI model (Vertical 
Transversely Isotropy) and HTI model (Horizontal Transversely Isotropy). 
In the first case we will assume that the measurement is made along the 
symmetry axis x in parallel direction to lamination (crack plain) (Fig. 1).

With this assumption, the matrix of elastic modules D will be the 
weighted sum of matrices of both types of anisotropy, i.e. VTI and HTI. 
The weighted sum coefficient should be selected so as to become the 
VTI medium after being turned by 90o in relation to axis x medium HTI 
together with motionless medium VTI. Therefore, we should expect the 
following condition to be fulfilled:
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where the matrix for VTI model is marked as CVTI and this matrix fulfils relation VTI
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Fig. 1. Drawing of a orthorhombic model  
as a combination of VTI model and  

a medium turned to angle θ = 90o HTI. 
Measurement in the plain x-z
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Matrix oo ,D 900 == θφ   is a symmetrical 6 × 6 matrix and it can be shown in the following way [6]:
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So the overall matrix D will be:
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We will consider motion equations for the components of the displacement field U1(x) and U3(z) disregarding the com-
ponent U2(y) independent of components Ux and Uz and assuming on account of measurement in direction of symmetry 
axis x that all derivatives relative to y equal zero.

The motion equations have the form (disregarding the external force):
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where:
t	 – time,
ρ	 – medium density,
Ti	 – stress tensor relating to strain Elk in accordance with Hooke`s law

						      Tij = dijlkElk = dijlkEkl	 (5)

Where strain tensor Elk = Ekl is connected with displacement field components Ul by relation:
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Taking into account the relation (6), relation (5) can be written as matrix:
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Where symmetrical matrix (6 × 6) D contains components of fourth order tensor dijlk in Voigt`s brief notation, in 
accordance with relation (3).

Making use of equation (7) we obtain:
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and
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From relation (4) and (8) and (9) we receive motion equations for components Ux and Uz:
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By presenting equations (10)-(11) in the form of Fourier transform we obtain:
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where:
kx and kz – wavenumbers, horizontal and vertical,
ω – angular frequency.

If we disregard shear waves qSH and qSV type assuming that C66 = 0 and C44 = 0, then from the equation determinant 
(12) the following form is obtained:
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From equation (13) we will define the square of the vertical wavenumber:

( ) ( ) ( ) 2
3311

2
11

2
1312

2
3311

2
11

242
2

2
1

4
1

2
1

x

x
z

kCCCCCCC

kCk

⎥⎦
⎤

⎢⎣
⎡ ⋅+−+++

−
=

ρω

ρωωρ                                             (14)

marking

( )

( ) '

'

CCC

CCC

131312

333311

2
1
2
1

=+

=+
                                                                          (15)

and assuming, after Thomsen [8] that:
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We receive from (14) the following relation:
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where:
	    η′ =2(ε′ – δ′)                                                                            (19)

and slowness	                                                            
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It is easy to notice that the form of vertical wavenumber kz is similar to wavenumber for medium VTI [1]. It only 
differs in the values e and d which were replaced with ε′, δ′ and q′ in accordance with the definition of relations (16)-
(17) and in consequence, the mean component values 'C33   and 'C13  . The result of the first relation of equation (15) is:
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Therefore, another difference is in the definition of used velocities. 
Vertical velocity V0 of longitudinal waves has been replaced by the root 
of the mean sum of velocity squares in direction of laminations and in 
perpendicular direction to laminations. This result seems understandable, 
considering the fact that for the same measurement direction in medium 
HTI [2] longitudinal waves propagated with velocity VII, which is in the 
same way as in isotropic medium, while in the orthorhombic model im-
mersed in model VTI, beside velocity in parallel direction to lamination 
VII there is also vertical velocity V^ – perpendicular to lamination.

Let us consider another case of orthorhombic medium, when the 
measurement is made along the symmetry axis of medium HTI immersed 
in medium VTI (Fig. 2).

The composition will be defined by matrices of elastic modules C for 
medium VTI and matrices of medium HTI –  in such a way that the sum 
of these matrices for angle θ = 0o was also equal to the matrix for the horizontally layered medium, i.e. CVTI:
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That is
	 Sθ→0 → CVTI                                                                                (22)

Using matrix oo ,D 9090 == θφ   [2] and matrix CVTI for VTI of the medium we obtain:
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In this case the measurement will be made in the plane x-z along the symmetry axis, that is in the same way as 
previously, we disregard calculations of component Uy and derivatives with regard to y.

By using matrix S (23), we receive the following forms for stress derivatives Tij,j:

Fig. 2. Drawing of an orthorhombic 
medium as combination of the medium of 
horizontally layered VTI and layered in 

perpendicular direction (or crack) type HTI
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By placing relation (24) in motion equations we obtain the stress forms for the components of displacement field 
Ux and Uz:
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After Fourier transform has been used (x → kx, z → kz, t → ω), a matrix equation is received:
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Calculating the determinant of equation (27), we receive a dispersion relation:
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If we disregard the shear wave qSV and assume C44 = 0, then:
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Making use of the relations:
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We obtain an expression of the square of vertical wavenumber in the form
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where q = 1 + 2ε, and ε i δ are Tomsen’s parameters [4]

η = 2(ε – δ)
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whereas S^ is the slowness in the perpendicular direction to the layers and is expressed by relation 1−
⊥⊥ =VS  , V^ is the 

velocity of longitudinal wave in perpendicular direction to lamination. The knowledge of the vertical wavenumber kz 
is an essential element of algorithm MG(F-K) of migration in dual frequency domain (F) and wavenumbers and space-
time domain x-t [4, 5]. The two-stage process of wavefield extrapolation assumes its relocation according to relation:
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from level zj to level zz j ∆+   by means of exponential operator with vertical wavenumber 
oz
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homogeneous medium. At the second stage a correction is made by means of filter ( ) ( )[ ] 121 −−= xjj zMi,xF ∆ω   – sums 
of Neumann power series, where:
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The correction is represented in this way:
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where ( )ω∆ ,zz,xU j
' +   is the transform of function ( )ω∆ ,zz,kU jx

' +  .

The last relation presents corrected wavefield at the level zz j ∆+  , which is then subjected to another iterative step 
in wavefield extrapolation into the depth of the medium.

In case of migration, before stack the extrapolation algorithm will be the product of corrective functions referred to 
the sources and receivers, while for the option zero-offset in relation (32) slowness S^ should be multiplied by 2. The 
detailed method of proceeding is analogical to the one discussed in the article by A. Kostecki [3].
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