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Algorithm of migration MG(F-K) in orthorhombic medium

Introduction

This article presents a description of properties of anisotropic orthorhombic medium by means of motion equa-
tions. This type of medium may be, in its relatively simple variant, a combination of transversely isotropic medium of
vertical axis of symmetry, i.e. VTI and the system of parallel crevices and cracks located in vertical plain. Therefore,
the orthorhombic model may be a combination of VTI model and HTI (Horizontal Transversely Isotropy) [7] (Fig. 1).
This kind of medium is a significantly better approximation of reality than model HTI, although it must still be treated
as a stage in searching for effective tools describing an azimuthal anisotropic model.

Decomposition of a complex orthorhombic model combined with definition of directions of situation and inclina-
tion of the plane of the cracks is an essential task in oil prospecting, which allows to settle several problems concern-
ing hydrodynamics of deposit fluids and construction of deposit reservoirs. Alternatively, an orthorhombic model may
function as a combination of model VTI and HTI — systems of complex internal anisotropy. In the article two cases of
measurements of the wavefield will be considered along the symmetry axis; when the symmetry axis is perpendicular
and when it is parallel to the lamination (cracking) plains. In both cases, appropriate motion equations will be devel-
oped and dispersion relations in order to determine vertical wavenumbers in function of horizontal wavenumber and
anisotropic parameters. The mentioned vertical wavenumbers will be used in construction of algorithms MG(F-K) of
migration functioning in dual domains: the wavenumbers (K) and frequency (F) and space-time — domain (#-x) [4, 5].

Basic equations

We will consider a medium as a combination of VTI model (Vertical y
Transversely Isotropy) and HTI model (Horizontal Transversely Isotropy). /
In the first case we will assume that the measurement is made along the /y
symmetry axis x in parallel direction to lamination (crack plain) (Fig. 1). -~ HTI
With this assumption, the matrix of elastic modules D will be the P =i , - A
weighted sum of matrices of both types of anisotropy, i.e. VTI and HTI. %.f”// 2
The weighted sum coefficient should be selected so as to become the ~_~ /_/,’/,:,_'__, T
VTI medium after being turned by 90° in relation to axis x medium HTI e i
together with motionless medium VTI. Therefore, we should expect the
following condition to be fulfilled: vz
Fig. 1. Drawing of a orthorhombic model
l(Dazoo 0 | po=v o= )_) . (1) as a combination of VTI model and
g Lo a medium turned to angle 6 = 90° HTL.

Measurement in the plain x-z

where the matrix for VTI model is marked as C,,, and this matrix fulfils relation D*="*="" =C,,.
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Matrix D?="%*"" is a symmetrical 6 x 6 matrix and it can be shown in the following way [6]:

Cll C13 C12 0 0 0
C; Gy G 0 0 0
Y=o 0= _ C, Gy G, 0 0 0 o
0 0 0 C, O 0
0 0 0 0 C, O
0 0 0 0 0o C,
So the overall matrix D will be:
Ci+Cy Cp+Cy Cyp+Cy 0 0 0
Co+C; G +C; C+Cy 0 0 0
D= l(D¢:o".a:9o“ +C\VTI): 1|C+Cy Cy+Cy G +Cy 0 0 0 G)
2 2 0 0 0 C44 + C44 0 0
0 0 0 0 Cu+Cy 0
0 0 0 0 0  C,+C,

We will consider motion equations for the components of the displacement field U,,, and U, disregarding the com-
ponent U, independent of components U, and U, and assuming on account of measurement in direction of symmetry
axis x that all derivatives relative to y equal zero.

The motion equations have the form (disregarding the external force):

U,

where:

t —time,

p —medium density,

T. — stress tensor relating to strain £, in accordance with Hooke's law

Tg/ = dgfzkEzk = d;‘jlkEkl )

Where strain tensor £, = E,, is connected with displacement field components U, by relation:
1
E,=E, = E(Ul,k + Uk,l) (6)

Taking into account the relation (6), relation (5) can be written as matrix:

L] U

T

Tol_p| U .
I 0

A A

T, 0

Where symmetrical matrix (6 x 6) D contains components of fourth order tensor d;, in Voigt's brief notation, in
accordance with relation (3).
Making use of equation (7) we obtain:

1
I, = 5{(C11 + Cll)l]x,x+(C12 +Cis )Uz,z}

X @®)
7—{3 = E(CM + C66 )(Uz,x + Ux’z)
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and

1
T;l = E(CM + C66 )(Uz,x + Ux,z)

1 1 ©)
T, = E(Cn +Cs xxt E(Cu +Cy, 7,z

From relation (4) and (8) and (9) we receive motion equations for components U, and U.:

o°U,

1 1
CllUx,xx + E(C44 + C66 vzt E[CIZ + C13 + C44 + Css ]Uz,xz =p Py (10)
1 1 1 aZUZ
E(CIZ + C13 + C44 + C66 x,zx + E(Cll + C33 2,2z + E(CM + Cé())l]z,xx = pW (1 1)
By presenting equations (10)-(11) in the form of Fourier transform we obtain:
Cllkf + %(CM +Ces )kzz - po’ %[Clz +Cy+Cyy +Cg ]kxkz U, (12)
. =0

1 1 1
E[Cu +C3+Cyy +Cy ]kxkz 7(C44 + Cys )kf + E(Cu + C33)k22 - pa)z U.

\e}

where:
k. and k, — wavenumbers, horizontal and vertical,
o — angular frequency.

If we disregard shear waves gSH and ¢SV type assuming that C,, = 0 and C,, = 0, then from the equation determinant
(12) the following form is obtained:

1 1
kzz{z(czl +C, ‘C33)k3 _E(Cll +C33)pa)

x

2—i(C12+C13)2k2}—pa)2C”kf+p2w4 =0 (13)

From equation (13) we will define the square of the vertical wavenumber:

p'o’ - pa’C k}

k=1 1 1 (14)
2
E(Cn +Cy )pa)z + |:4(C12 + CIS) - §(C12| +C,-Cy ):|kj
marking
1 ,
E(Cn + C33) =C,
1 (15)
E(CIZ + C13)= Cys
and assuming, after Thomsen [8] that:
G~ C;3 — (16)
2C;,
and
C, 2
[PJ =25 +1
C 33 (17)
U =26 +1=¢q
C33

We receive from (14) the following relation:
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o 'Sy — 0’ Syq 'k} 8
: @’S; —n'k’ (18)

where:
n' =2(e' - 9") (19)

1
and slowness Sy =—
VO
It is easy to notice that the form of vertical wavenumber £, is similar to wavenumber for medium VTI [1]. It only

differs in the values € and & which were replaced with ¢', 6’ and ¢’ in accordance with the definition of relations (16)-
(17) and in consequence, the mean component values Cy; and C;,. The result of the first relation of equation (15) is:

v =) 20)
Therefore, another difference is in the definition of used velocities.

Vertical velocity V, of longitudinal waves has been replaced by the root
of the mean sum of velocity squares in direction of laminations and in

perpendicular direction to laminations. This result seems understandable, _
considering the fact that for the same measurement direction in medium J C
HTI [2] longitudinal waves propagated with velocity V), which is inthe -~ ﬁ
same way as in isotropic medium, while in the orthorhombic model im-
mersed in model VTI, beside velocity in parallel direction to lamination || | /
V,, there is also vertical velocity V| — perpendicular to lamination. ‘ '
Let us consider another case of orthorhombic medium, when the vz '
measurement is made along the symmetry axis of medium HTI immersed Fig. 2. Drawing of an orthorhombic
in medium VTI (Fig. 2). medium as combination of the medium of

horizontally layered VTI and layered in

The composition will be defined by matrices of elastic modules C for X T
perpendicular direction (or crack) type HTI

medium VTI and matrices of medium HTI — in such a way that the sum
of these matrices for angle § = 0° was also equal to the matrix for the horizontally layered medium, i.e. Cy;;:

00" =0 1
D=0 OZECVTI

e @1
%D¢=9o 0-90" %Cm _s
That is
Sp0 = Cyy (22)
Using matrix D?™" =" [2] and matrix C,,, for VTI of the medium we obtain:
C,+C, C,+C; Cy+C, 0 0 0
C,+C, C,+C, C,+C; 0 0 0
o _1Ga+Cy CorCy GirCy 0 0 0 @3
2 o 0 0  C,+C, 0 0
0 0 0 0 Cu+Cy 0
0 0 0 0 0 Cu+C,

In this case the measurement will be made in the plane x-z along the symmetry axis, that is in the same way as
previously, we disregard calculations of component U, and derivatives with regard to y.
By using matrix S (23), we receive the following forms for stress derivatives 7, :
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24)

(25)

1
Tlvl,l = E(Cll + C13 )(]x,xx + C13Uz,zx
T5,=Cy (Uz,xz + Ux,zz)
T;l,l = C44 (Uz,xx + Ux,zx)
7;3,3 = C13Ux,xz + Clle,zz
By placing relation (24) in motion equations we obtain the stress forms for the components of displacement field
U,and U;:
1 o',
E(Cll +Cs )([x,xx +CLU, . + (C13 +Cy )Uz,zx = p?
U
(CIS + C44 )(‘]x,zx + C44Uz’xx + ClIUz,zz = paTQZ

(26)

After Fourier transform has been used (x — &, z — k,, t — ®), a matrix equation is received:

%(Cn +Cy )kf + C44k22 - pa)z (C44 +C, )kxkz ) U,

=0

z

(C44 + C13 )kxkz C:UkZ2 + C44k)§ - pa)z

Calculating the determinant of equation (27), we receive a dispersion relation:
kla,+kla, +a,=0
where:
a,=C;-Cyy
1

a = E(Cu +C, )an.f + C44kj - (C44 + C13)2 kx2 - po’ (Cn + C44)
_Le (C,+Cuk!~C 2kz—l(c C, )pa’k? + p'o’

az_2 aa\Cyy + G )i 4 PO K, ) ntCy)pok +p o

If we disregard the shear wave ¢SV and assume C,, = 0, then:

1
22 a, po’ - E(Cn +Cy )pa)zkf
a, Clzaki +C, 1,0(02 - %(Cn +Cy )Cl 1k§

Making use of the relations:
G, +Cyy =2C,(1+¢)
C,-Cy=pVi+2e)=pV}-q
C =(1+26)C2
C,=Cy-(26+1)=Cyy g

1
ECII(CH +C33)=p2Vf(l+€)-q

We obtain an expression of the square of vertical wavenumber in the form

= 'St —’ST-(1+ &)k’
@’S? —(n+eq)k;

z

where ¢ = 1 + 2¢, and ¢ 1 0 are Tomsen’s parameters [4]

n=2(e-9)

27)

(28)

29)

(30)

G

(32)
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whereas S, is the slowness in the perpendicular direction to the layers and is expressed by relation S, =V,", V, is the

velocity of longitudinal wave in perpendicular direction to lamination. The knowledge of the vertical wavenumber £,

is an essential element of algorithm MG(F-K) of migration in dual frequency domain (F) and wavenumbers and space-

time domain x-7 [4, 5]. The two-stage process of wavefield extrapolation assumes its relocation according to relation:

U'(kx,zj +Azw)=e

ikzDA;U(kx,Zj,w) (33)

from level z; to level z; + 4z by means of exponential operator with vertical wavenumber k, corresponding to

homogeneous medium. At the second stage a correction is made by means of filter F](x )= [1 —i/2 4zM j(x)}‘ — sums

of Neumann power series, where:

M () =k k2 — k2 )"k,

The correction is represented in this way:

U, = E ol ez, .0)

(34)

(33)

where U '(x, z;+ Aza)) is the transform of function U '(kx,z + Aza))

The last relation presents corrected wavefield at the level z; + 4z, which is then subjected to another iterative step
in wavefield extrapolation into the depth of the medium.

In case of migration, before stack the extrapolation algorithm will be the product of corrective functions referred to

the sources and receivers, while for the option zero-offset in relation (32) slowness S, should be multiplied by 2. The
detailed method of proceeding is analogical to the one discussed in the article by A. Kostecki [3].

Artykut nadestano do Redakeji 04.11.2009 r. Przyjeto do druku 15.02.2010 .
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