
302

NAFTA-GAZ	 kwiecień 2013	 ROK LXIX

Vyacheslav Mikhaylovich Maksimov
Oil and Gas Research Institute of RAS, Moscow

Nikolay Mikhaylovich Dmitriev 
Russian State Gubkin University of Oil and Gas, Moscow

A new approach to the study of a representative 
anisotropic core sample and two-phase flow in 
anisotropic filtering porous environments

Theoretical analysis

The modern state of oil production is characterized by 
the increase in heavily recoverable reserves of hydrocarbons. 
Therefore new technological processes are used for hydro-
carbon recovery and their efficiency is related to a more 
adequate description of the formation, including allowing for 
anisotropy of filtration-volumetric properties of the forma-
tion. Let’s consider the generalization of classical models 
of the theory of one- and two-phased flow of immiscible 
fluids, based on the tensor representation of the absolute 
and phase permeability coefficients in anisotropic porous 
media which is typical for real hydrocarbon reservoirs.

Measuring the elastic properties of core material seems 
to be the most efficient method of establishing the fact of 
anisotropy of filtration-volumetric properties (FVP) and 
determination of the anisotropy type (symmetry of FVP 
of real hydrocarbon reservoirs).

In the simultaneous flow of two immiscible fluids (e.g., 
oil and water) it’s accepted, that the Darcy law is kept for 
each phase and has a form:
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	–	 components of phase filtration velocity vector,
µα 	 –	 dynamic viscosity coefficient,
pα 	 –	 pressure in phases.

In equ. (1) and in the following the greek letters (sub-
indices) denote a phase number and the latin letters (sub-
indices) denote the components of vectors and tensors. 
The recurrent latin letters imply summation, summation 
is not taken with respect to the greek (indices). For con-
venience the tensors and the vectors are written in cartesian 
coordinates. Equation (1) introduces new material char-
acteristics 

 5

 laboratory test data are processed and empirical constants are determined using the expli-

cit form of relative phase permeability functions. 

Below we’ll consider an explicit representation of the relation (3) between the phase 

and absolute permeabilities and the laboratory method for the determination of non-diagonal 

tensor components of phase permeability for media with monoclinic and triclinic symmetry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Scheme of the core-sample cut out 

 

Representation of phase and absolute permeabilities relation to tensor components of 

phase permeabilities with triclinic symmetry of filtration properties 
Explicit form of relationship (3) is determined by anisotropy type (symmetry group) of 

filtration properties. 

In the case of triclinic symmetry of filtration properties the position of the main axes 

of tensors α
ijK  and Kij is unknown, therefore these tensors contain all six components. For 

transformation of the relationship (3) it’s necessary first to define tensor components of abso-

lute permeabilities. After all the tensor Kij components are determined it can be reduced at the 

main axes. Then relationship (3) can be written in the main axes. The relationship get simpli-

fied and take a form: 
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where αξmn  are tensor components of relative phase permeabilities in the coordinate system, 

coinciding with the main axes of the absolute permeability tensor; Ki are main values of the 

absolute permeability tensor. 

Using relationship (4) it can be shown, that tensors α
ijK  and Kij can belong to different 

symmetry groups. Indeed, assuming that all the tensor components αξmn  are non-zero, then 

tensors α
ijK  and Kij have different symmetry axes. Moreover, the symmetry of tensor Kij can 
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where αξmn  are tensor components of relative phase permeabilities in the coordinate system, 

coinciding with the main axes of the absolute permeability tensor; Ki are main values of the 

absolute permeability tensor. 

Using relationship (4) it can be shown, that tensors α
ijK  and Kij can belong to different 

symmetry groups. Indeed, assuming that all the tensor components αξmn  are non-zero, then 

tensors α
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where relative phase permeability f    a(S) are assumed as 
saturation universal functions and the tensor symmetry 
is put as identical.

Later it was shown theoretically [5, 4, 7] and confirmed 
experimentally [8], that relative phase permeability is de-
pendent not only on saturation, but on flow direction, and 
the most general relationship between phase and absolute 
permeability is given by the tensor of 4th rank:
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where α
klijF  is the tensor of relative phase permeability coefficients with the first and second 

pair of indices symmetric  even when rearranged. 

Alongside it, the elastic properties of media are described by Hook’s law 

klklijijklklijij pSCp == εε or  

where  

pij – components of stress tensor; 

εkl – components of deformation tensor; 

Cij kl and εkl are components of the tensors of 4-th rank. 

The 4-th rank tensors α
klijF , prescribing relative phase permeability, are the same rank 

and the same internal symmetry as the tensors of the elasticity coefficients Cij kl or elastic 

pliability Sij kl in Hook’s law. 

Explicit form of the tensors Cij kl, Sij kl is determined by the symmetry group of elastic 

properties, in which case the symmetry group of tensors Cij kl, Sij kl, and Fij kl coincide. The 

symmetry of elastic properties can be determined by the form of tensor surfaces. In particular, 

the values reciprocal to Young’s modulus, E(ni), in the direction ni are determined by formula 

E
-1

 (ni) = Sij kl ni nj nk nl 

Therefore using conventional methods for the determination of elastic characteristics 

one can measure elastic properties for the cross-section of tensor surface; for example, from 

the normal plane to the core’s axis of symmetry, and define their symmetry. In figure 1 

there’s a photograph of the device, measuring the ultrasound wave velocity through the por-

ous media.  

In fig. 2 the measuring results of core elastic properties are shown. The direction of the 

extreme properties (minimum and maximum) is determined by the measured data, and then 

the samples of smaller dimensions are cut out from the sample core along the extreme direc-

tions for the carrying out of hydrodynamic studies. 
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coefficients with the first and second pair of indices sym-
metric even when rearranged. 

Alongside it, the elastic properties of media are de-
scribed by Hook’s law 

	 pij = Cij kl ekl  or  eij = Sij kl pij	
where 
pij – components of stress tensor;
ekl – components of deformation tensor;
Cij kl and ekl are components of the tensors of 4th rank.

The 4th rank tensors 
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permeability, are the same rank and the same internal 
symmetry as the tensors of the elasticity coefficients Cij kl 
or elastic pliability Sij kl in Hook’s law.

Explicit form of the tensors Cij kl, Sij kl is determined by 
the symmetry group of elastic properties, in which case the 
symmetry group of tensors Cij kl, Sij kl and Fij kl coincide. The 
symmetry of elastic properties can be determined by the form 
of tensor surfaces. In particular, the values reciprocal to Young’s 
modulus, E(ni), in the direction ni are determined by formula

	 E-1 (ni) = Sij kl ni nj nk nl	

Therefore using conventional methods for the determina-
tion of elastic characteristics one can measure elastic properties 

for the cross-section of tensor surface; for example, from the 
normal plane to the core’s axis of symmetry, and define their 
symmetry. In figure 1 there’s a photograph of the device, mea-
suring the ultrasound wave velocity through the porous media. 

In fig. 2 the measuring results of core elastic proper-
ties are shown. The direction of the extreme properties 
(minimum and maximum) is determined by the measured 
data, and then the samples of smaller dimensions are cut 
out from the sample core along the extreme directions for 
the carrying out of hydrodynamic studies.

Fig. 1. The device «Uzor 2000» for measuring of 
ultrasound wave velocity through a porous material
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Fig. 2. Section of the surface of elastic properties measured along the lateral surface of the 

core-sample 

 

The symmetry type principle of filtration properties 
A) In the most general case the position of the main axes of the 2-nd rank tensors of is un-

known and the problem of determination of all six tensor components of the permeability 

coefficients reduces. Therefore the minimum number of measurements equals 6. In prin-

ciple all six components can be determined by the data of six measurements, obtained 

along six independent directions. 

B) In the next case with a descending level of complexity is needed to determine four com-

ponents of tensor permeability. In this case the position of one of the main axes is known 

and it’s necessary to determine the position of two other axes (one rotation angle of the 

laboratory coordinate system Oxyz around the known main axis), and three main tensor 

components of permeability. Thus, the minimum number of measurements needed equals 

4. In fig. 3c the surface section of elastic properties for cases A and B is shown. 
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The symmetry type principle of filtration properties

A)	In the most general case the position of the main axes 
of the 2nd rank tensors of is unknown and the problem 
of determination of all six tensor components of the 
permeability coefficients reduces. Therefore the mini-

mum number of measurements equals 6. In principle 
all six components can be determined by the data of 
six measurements, obtained along six independent 
directions.
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B)	In the next case with a descending level of complex-
ity is needed to determine four components of tensor 
permeability. In this case the position of one of the 
main axes is known and it’s necessary to determine the 
position of two other axes (one rotation angle of the 
laboratory coordinate system Oxyz around the known 
main axis), and three main tensor components of perme-
ability. Thus, the minimum number of measurements 
needed equals 4. In fig. 3c the surface section of elastic 
properties for cases A and B is shown.

C)	For porous media with orthotropic filtration properties 
the position of all the main axes is known. Therefore 
for the specification of filtration properties, three main 
values of tensor permeability would be enough. The 
problem is solved by three measurements, obtained 
along the main directions. In fig. 3b the section of the 
elastic properties for case C is shown.

•	 for each sample the absolute permeability coefficients 
are determined using conventional methods,

•	 for profound check of the test data some check samples 
can be prepared; test data obtained from the check 
samples can be recalculated using «base» measurements 
and allow error estimation,

•	 after absolute permeability tensor is determined the 
same samples are used for laboratory measurements 
of relative e phase permeability functions,

•	 laboratory test data are processed and empirical con-
stants are determined using the explicit form of relative 
phase permeability functions.

D)	For transversal-isotropic material the problem is re-
duced even more: it’s necessary to determine only the 
two main values of tensor permeability. The minimum 
number of measurements equals two. Measurements 
are made in an isotropy plane of filtration properties 
and in the direction normal to it. In fig. 3a the section 
surface of elastic properties for case D is shown.
The principle determination schemes of permeability 

anisotropy in one- and two-phase fluid flow remain the 
same in the selection of the number of cores and direc-
tions of measurements. Thus, the problem of absolute and 
relative phase permeability determination in anisotropic 
formations focuses on setting the symmetry of filtration 
properties and then at carrying out the experiments on the 
cut samples, core handling and obtaining the permeability 
matrixes. The determination of the RFP functions can be 
realized by using the formulae proposed in [4, 5, 7].

The sequence of performing the complex studies

Finally, to perform the complex studies of filtration- 
-volumetric properties, the following working plan for real 
core material is suggested:
•	 the symmetry of elastic core properties is determined 

by ultrasonic wave velocities and elastic properties 
measurement,

•	 the symmetry (anisotropy type or isotropy) of the core 
filtration properties is determined by the symmetry of 
elastic properties,

•	 the number and the directions of core sample cut-
ting out are determined depending on symmetry type 
(fig. 4),

Fig. 3. Section of the surface of elastic properties on plane x1x3 in the case when the position of all main the axes is known 
(isotropic, transversal-isotropic and orthotropic properties) 

I – figures 3a, 3b; figure 3c is a section of the surface elastic properties by the plane x1x2 when the position of all main axes 
is unknown
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Below we’ll consider an explicit representation of the 
relation (3) between the phase and absolute permeabilities 
and the laboratory method for the determination of non-
diagonal tensor components of phase permeability for 
media with monoclinic and triclinic symmetry.

Explicit form of relationship (3) is determined by an-
isotropy type (symmetry group) of filtration properties.

In the case of triclinic symmetry of filtration properties 
the position of the main axes of tensors 
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where αξmn  are tensor components of relative phase permeabilities in the coordinate system, 

coinciding with the main axes of the absolute permeability tensor; Ki are main values of the 

absolute permeability tensor. 

Using relationship (4) it can be shown, that tensors α
ijK  and Kij can belong to different 

symmetry groups. Indeed, assuming that all the tensor components αξmn  are non-zero, then 

tensors α
ijK  and Kij have different symmetry axes. Moreover, the symmetry of tensor Kij can 
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where αi, bi, εi, βi are parameters experimentally determined; in which case ( )( )*1
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Equ. (5) should satisfy the following conditions: when 
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Fig. 4. Scheme of the core-sample cut out

 5

 laboratory test data are processed and empirical constants are determined using the expli-

cit form of relative phase permeability functions. 

Below we’ll consider an explicit representation of the relation (3) between the phase 

and absolute permeabilities and the laboratory method for the determination of non-diagonal 

tensor components of phase permeability for media with monoclinic and triclinic symmetry. 
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Representation of phase and absolute permeabilities relation to tensor components of 

phase permeabilities with triclinic symmetry of filtration properties 
Explicit form of relationship (3) is determined by anisotropy type (symmetry group) of 

filtration properties. 

In the case of triclinic symmetry of filtration properties the position of the main axes 

of tensors α
ijK  and Kij is unknown, therefore these tensors contain all six components. For 

transformation of the relationship (3) it’s necessary first to define tensor components of abso-

lute permeabilities. After all the tensor Kij components are determined it can be reduced at the 

main axes. Then relationship (3) can be written in the main axes. The relationship get simpli-

fied and take a form: 
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where αξmn  are tensor components of relative phase permeabilities in the coordinate system, 

coinciding with the main axes of the absolute permeability tensor; Ki are main values of the 

absolute permeability tensor. 

Using relationship (4) it can be shown, that tensors α
ijK  and Kij can belong to different 

symmetry groups. Indeed, assuming that all the tensor components αξmn  are non-zero, then 

tensors α
ijK  and Kij have different symmetry axes. Moreover, the symmetry of tensor Kij can 

 

Representation of phase and absolute permeabilities relation to tensor components of phase permeabilities  
with triclinic symmetry of filtration properties
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The multipliers (S – S(i)*) and (S*(i) – S) ensure satisfac-
tion of the above mentioned conditions and correspond to 
the common approximation of relative phase permeability 
for isotropic porous media. The multiplier I1(K)/Ki, where 
I1(K) is a first invariant of absolute permeability tensor, is 
due to anisotropy. Then, for approximation of the functions, 
it’s needed to take into account the condition at another 
range of the interval saturation change. Initially the phase 
permeability functions were constructed in the interval 
S* ≤ S ≤ 1 (for water) and 0 ≤ S ≤ S* (for oil or gas). In this 
case 
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where αi, bi, εi, βi are parameters experimentally determined; in which case ( )( )*1

iii Sϕα = , 

( )( )*2
iSb ii ϕ= . 
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of saturations differ from zero and 1. Therefore let’s consider the generalization of explicit 

form for relative phase permeability functions for this particular case. The general form of the 

relative phase permeability functions (4) can be written as: 

liikiikiji θξθξξϕα
1;++=  (5) 

where 
jjiijiii KKKK == θϕ αα , . 

Eq. (5) should satisfy the following conditions: when S = S(i)*, 0  1

i =ϕ , and when 

S = S*(i), 0  2

i =ϕ . Assuming that all the functions are of the same order, then (5) can be trans-

formed in the following approximate equations: 

( ) ( )( )

( ) ( )( )SiS
K

KI

iSS
K

KI

ii

i

i

ii

i

i

−⋅⋅=

−⋅⋅=

*

*

12

11

ξϕ

ξϕ

 (6) 

where summation with respect to (i) is absent. 

The multipliers (S – S(i)*) and (S*(i) – S) ensure satisfaction of the above mentioned 

conditions and correspond to the common approximation of relative phase permeability for 

isotropic porous media. The multiplier I1(K)/Ki, where I1(K) is a first invariant of absolute 

permeability tensor, is due to anisotropy. Then, for approximation of the functions, it’s 

needed to take into account the condition at another range of the interval saturation change. 

Initially the phase permeability functions were constructed in the interval S* ≤ S ≤ 1 (for wa-

ter) and 0 ≤ S ≤ S* (for oil or gas). In this case ϕα
 values at the interval boundaries were fixed: 

( ) 1  11

i =ϕ  (for water) and ( ) 1  02

i =ϕ  (for oil or gas). Recently the measurements have been per-

formed in the mobility interval for both phases S* ≤ S ≤ S*. Therefore the ( )*S  1

i =Sϕ  values 

(for water) and ( )*S  2

i =Sϕ  values (for oil and gas) transform in the values «at free range» and 

are determined experimentally. Thus, it’s needed that the initial relative phase permeability 

representation φ = [(S – S*)
ε
/(1 – S*)] for isotropic media to be replaced by  

( )( ) ( ) ( )( )*/ *

*

11
iSSiSS iii

i −−=
εαϕ . Therefore, assuming that multiplier I1(k)Fγ/kα in (6) is due 

to anisotropy and equals 1 for isotropic media, then in the case of anisotropy the relative 

phase permeability functions representation, satisfying the above mentioned conditions, can 

be presented as: 

( )
( )( ) ( )

( ) ( ) 











−

−












−













−+=
*

*
1

3 *

*11

iSS

iSS
SS

k

kI

i

i

i

ii αϕ  – for water (7) 

( ) ( )( ) ( )

( ) ( )

β

ϕ












−

−












−













−+=
*

*1
3 *

*

12

iSS

SS
iSS

k

kI
b

i

i

i

ii  – for oil or gas (8) 

where αi, bi, εi, βi are parameters experimentally determined; in which case ( )( )*1

iii Sϕα = , 

( )( )*2
iSb ii ϕ= . 

 values (for oil and gas) transform 
in the values «at free range» and are determined experimen-
tally. Thus, it’s needed that the initial relative phase perme-
ability representation φ = [(S – S*)ε/(1 – S*)] for isotropic 
media to be replaced by 

 6

be increased from triclinic to orthotropic one and then to transversal – isotropic and isotropic, 

successively supposing that K1 = K2 ≠ K3 and K1 = K2 = K3. In any case the phase permeability 

tensors will have triclinic symmetry, i.e. they will be characterized by all six non-zero com-

ponents. Hence, the symmetry of the filtration properties tensors α
ijK  and Kij may not coin-

cide. In which case relative phase permeability tensors symmetry should coincide with phase 

permeability tensors symmetry.  

For solution of the applied problems, a case of great interest, is when limiting values 

of saturations differ from zero and 1. Therefore let’s consider the generalization of explicit 

form for relative phase permeability functions for this particular case. The general form of the 

relative phase permeability functions (4) can be written as: 

liikiikiji θξθξξϕα
1;++=  (5) 

where 
jjiijiii KKKK == θϕ αα , . 

Eq. (5) should satisfy the following conditions: when S = S(i)*, 0  1

i =ϕ , and when 

S = S*(i), 0  2

i =ϕ . Assuming that all the functions are of the same order, then (5) can be trans-

formed in the following approximate equations: 

( ) ( )( )

( ) ( )( )SiS
K

KI

iSS
K

KI

ii

i

i

ii

i

i

−⋅⋅=

−⋅⋅=

*

*

12

11

ξϕ

ξϕ

 (6) 

where summation with respect to (i) is absent. 

The multipliers (S – S(i)*) and (S*(i) – S) ensure satisfaction of the above mentioned 

conditions and correspond to the common approximation of relative phase permeability for 

isotropic porous media. The multiplier I1(K)/Ki, where I1(K) is a first invariant of absolute 

permeability tensor, is due to anisotropy. Then, for approximation of the functions, it’s 

needed to take into account the condition at another range of the interval saturation change. 

Initially the phase permeability functions were constructed in the interval S* ≤ S ≤ 1 (for wa-

ter) and 0 ≤ S ≤ S* (for oil or gas). In this case ϕα
 values at the interval boundaries were fixed: 

( ) 1  11

i =ϕ  (for water) and ( ) 1  02

i =ϕ  (for oil or gas). Recently the measurements have been per-

formed in the mobility interval for both phases S* ≤ S ≤ S*. Therefore the ( )*S  1

i =Sϕ  values 

(for water) and ( )*S  2

i =Sϕ  values (for oil and gas) transform in the values «at free range» and 

are determined experimentally. Thus, it’s needed that the initial relative phase permeability 

representation φ = [(S – S*)
ε
/(1 – S*)] for isotropic media to be replaced by  

( )( ) ( ) ( )( )*/ *

*

11
iSSiSS iii

i −−=
εαϕ . Therefore, assuming that multiplier I1(k)Fγ/kα in (6) is due 

to anisotropy and equals 1 for isotropic media, then in the case of anisotropy the relative 

phase permeability functions representation, satisfying the above mentioned conditions, can 

be presented as: 

( )
( )( ) ( )

( ) ( ) 











−

−












−













−+=
*

*
1

3 *

*11

iSS

iSS
SS

k

kI

i

i

i

ii αϕ  – for water (7) 

( ) ( )( ) ( )

( ) ( )

β

ϕ












−

−












−













−+=
*

*1
3 *

*

12

iSS

SS
iSS

k

kI
b

i

i

i

ii  – for oil or gas (8) 

where αi, bi, εi, βi are parameters experimentally determined; in which case ( )( )*1

iii Sϕα = , 

( )( )*2
iSb ii ϕ= . 

. 
Therefore, assuming that multiplier I1(k)Fγ/kα in (6) is due to 
anisotropy and equals 1 for isotropic media, then in the case 
of anisotropy the relative phase permeability functions 
representation, satisfying the above mentioned conditions, 
can be presented as:

The analysis of the dependence of the main axes of phase permeabilities tensor on saturation

To keep our following considerations more visualized, 
an analysis of the dependence of the main axes on saturation 
for tensors with monoclinic symmetry of filtration proper-
ties is done. It’s well known, that any symmetric tensor of 

2nd rank can be reduced to the main axes, in which it takes 
a diagonal form. In particular, for monoclinic symmetry of 
filtration properties the position of one main axis is known. 
So, reducing the main axes is realized by rotation around 
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be increased from triclinic to orthotropic one and then to transversal – isotropic and isotropic, 

successively supposing that K1 = K2 ≠ K3 and K1 = K2 = K3. In any case the phase permeability 

tensors will have triclinic symmetry, i.e. they will be characterized by all six non-zero com-

ponents. Hence, the symmetry of the filtration properties tensors α
ijK  and Kij may not coin-

cide. In which case relative phase permeability tensors symmetry should coincide with phase 

permeability tensors symmetry.  

For solution of the applied problems, a case of great interest, is when limiting values 

of saturations differ from zero and 1. Therefore let’s consider the generalization of explicit 

form for relative phase permeability functions for this particular case. The general form of the 

relative phase permeability functions (4) can be written as: 

liikiikiji θξθξξϕα
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Eq. (5) should satisfy the following conditions: when S = S(i)*, 0  1
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S = S*(i), 0  2

i =ϕ . Assuming that all the functions are of the same order, then (5) can be trans-
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where summation with respect to (i) is absent. 

The multipliers (S – S(i)*) and (S*(i) – S) ensure satisfaction of the above mentioned 

conditions and correspond to the common approximation of relative phase permeability for 

isotropic porous media. The multiplier I1(K)/Ki, where I1(K) is a first invariant of absolute 

permeability tensor, is due to anisotropy. Then, for approximation of the functions, it’s 

needed to take into account the condition at another range of the interval saturation change. 
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i =Sϕ  values (for oil and gas) transform in the values «at free range» and 
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representation φ = [(S – S*)
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/(1 – S*)] for isotropic media to be replaced by  
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That the indices εi and βi should be represented through 
invariant values defining the filtration-volumetric param-

eters of media, and it’s value should correspond to known 
approximations in going from anisotropy case to isotropic 
case.

Traditional relative phase permeability representation 
for isotropic media is a particular case for (7) , (8). For 
the general case of triclinic symmetry of filtration proper-
ties the approximations of the relative phase permeability 
function can be represented as: 
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where when i ≠ j the indexes i, j, l form a cyclic rearrangement of 1, 2, 3, and when i = j all 

indexes are equal (i = j = l); but summation with respect to i is not taken. Note, that to get 

relative phase permeability the diagonal components of α
ijK -tensor are divided by correspond-

ing components of Kij-tensor. This approach is impossible for the non-diagonal components, 

because the corresponding non-diagonal component of Kij-tensor equals zero. 

Therefore relative phase permeability for a nondiagonal component is obtained by di-

vision by one of the main components of Kij-tensor. In eg. (9) there’s one of the possible va-

riants in i, j, l – indices forming cyclic rearrangement. 

Equ. (9) determine phase permeability for triclinic symmetry of filtration properties, 

so they are the most general, and phase permeabilities for all anisotropy types (symmetry 

classes) can be obtained through them. For monoclinic symmetry it’s needed to set 

02313 == αα
kk  in equations (9), for orthotropic symmetry, 0122313 === ααα

kkk , for transversal 

– isotropic symmetry it’s needed to add the equality k11 = k22 to the latter condition. 

 

The analysis of the dependence of the main axes of phase permeabilities tensor on satu-

ration 
To keep our following considerations more visualized, an analysis of the dependence 

of the main axes on saturation for tensors with monoclinic symmetry of filtration properties is 

done. It’s well known, that any symmetric tensor of 2-nd rank can be reduced to the main 

axes, in which it takes a diagonal form. In particular, for monoclinic symmetry of filtration 

properties the position of one main axis is known. So, reducing the main axes is realized by 

rotation around that principle axis. Assuming that a principle axis consides with axis Z, then a 

rotation angle is defined by 

2211
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2
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k
tg

−
=ϕ  (10) 

By analogy reducing the phase permeability tensors α
ijk  to the main axes it’s needed to 

turn the coordinate system at angles φα, so: 

αα

α
αϕ
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122
2
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k
tg

−
=  (11) 

However, if in equation (10) all the component values are constant and angle φ is 

fixed, then in equation (11) the tensor component values depend on saturation and change; 

therefore the angles φα values can change also. Indeed, as it was shown in experiment [8], the 

phase and relative phase permeability values in anisotropic media are dependent on direction, 

and higher absolute permeability values correspond to higher phase and relative phase per-

meability values. In the representation of the relative phase permeability functions it’s taken 
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where when i ≠ j the indexes i, j, l form a cyclic rearrangement of 1, 2, 3, and when i = j all 
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where when i ≠ j the indexes i, j, l form a cyclic rearrange-
ment of 1, 2, 3, and when i = j all indexes are equal 
(i = j = l); but summation with respect to i is not taken. 
Note, that to get relative phase permeability the diagonal 
components of 
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 laboratory test data are processed and empirical constants are determined using the expli-

cit form of relative phase permeability functions. 

Below we’ll consider an explicit representation of the relation (3) between the phase 

and absolute permeabilities and the laboratory method for the determination of non-diagonal 

tensor components of phase permeability for media with monoclinic and triclinic symmetry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Scheme of the core-sample cut out 

 

Representation of phase and absolute permeabilities relation to tensor components of 

phase permeabilities with triclinic symmetry of filtration properties 
Explicit form of relationship (3) is determined by anisotropy type (symmetry group) of 

filtration properties. 

In the case of triclinic symmetry of filtration properties the position of the main axes 

of tensors α
ijK  and Kij is unknown, therefore these tensors contain all six components. For 

transformation of the relationship (3) it’s necessary first to define tensor components of abso-

lute permeabilities. After all the tensor Kij components are determined it can be reduced at the 

main axes. Then relationship (3) can be written in the main axes. The relationship get simpli-

fied and take a form: 
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where αξmn  are tensor components of relative phase permeabilities in the coordinate system, 

coinciding with the main axes of the absolute permeability tensor; Ki are main values of the 

absolute permeability tensor. 

Using relationship (4) it can be shown, that tensors α
ijK  and Kij can belong to different 

symmetry groups. Indeed, assuming that all the tensor components αξmn  are non-zero, then 

tensors α
ijK  and Kij have different symmetry axes. Moreover, the symmetry of tensor Kij can 

 

 -tensor are divided by corresponding 
components of Kij -tensor. This approach is impossible for 
the non-diagonal components, because the corresponding 
non-diagonal component of Kij-tensor equals zero.

Therefore relative phase permeability for a nondiagonal 
component is obtained by division by one of the main com-
ponents of Kij -tensor. In eg. (9) there’s one of the possible 
variants in i, j, l – indices forming cyclic rearrangement.

Equ. (9) determine phase permeability for triclinic sym-
metry of filtration properties, so they are the most general, 
and phase permeabilities for all anisotropy types (symmetry 
classes) can be obtained through them. For monoclinic 
symmetry it’s needed to set 
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That the indices εi and βi should be represented through invariant values defining the 

filtration – volumetric parameters of media, and it’s value should correspond to known ap-

proximations in going from anisotropy case to isotropic case. 

Traditional relative phase permeability representation for isotropic media is a particu-

lar case for (7), (8). For the general case of triclinic symmetry of filtration properties the ap-

proximations of the relative phase permeability function can be represented as 
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where when i ≠ j the indexes i, j, l form a cyclic rearrangement of 1, 2, 3, and when i = j all 

indexes are equal (i = j = l); but summation with respect to i is not taken. Note, that to get 

relative phase permeability the diagonal components of α
ijK -tensor are divided by correspond-

ing components of Kij-tensor. This approach is impossible for the non-diagonal components, 

because the corresponding non-diagonal component of Kij-tensor equals zero. 

Therefore relative phase permeability for a nondiagonal component is obtained by di-

vision by one of the main components of Kij-tensor. In eg. (9) there’s one of the possible va-

riants in i, j, l – indices forming cyclic rearrangement. 

Equ. (9) determine phase permeability for triclinic symmetry of filtration properties, 

so they are the most general, and phase permeabilities for all anisotropy types (symmetry 

classes) can be obtained through them. For monoclinic symmetry it’s needed to set 

02313 == αα
kk  in equations (9), for orthotropic symmetry, 0122313 === ααα

kkk , for transversal 

– isotropic symmetry it’s needed to add the equality k11 = k22 to the latter condition. 

 

The analysis of the dependence of the main axes of phase permeabilities tensor on satu-

ration 
To keep our following considerations more visualized, an analysis of the dependence 

of the main axes on saturation for tensors with monoclinic symmetry of filtration properties is 

done. It’s well known, that any symmetric tensor of 2-nd rank can be reduced to the main 

axes, in which it takes a diagonal form. In particular, for monoclinic symmetry of filtration 

properties the position of one main axis is known. So, reducing the main axes is realized by 

rotation around that principle axis. Assuming that a principle axis consides with axis Z, then a 

rotation angle is defined by 
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However, if in equation (10) all the component values are constant and angle φ is 

fixed, then in equation (11) the tensor component values depend on saturation and change; 

therefore the angles φα values can change also. Indeed, as it was shown in experiment [8], the 

phase and relative phase permeability values in anisotropic media are dependent on direction, 

and higher absolute permeability values correspond to higher phase and relative phase per-

meability values. In the representation of the relative phase permeability functions it’s taken 

 in equations (9), 
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That the indices εi and βi should be represented through invariant values defining the 

filtration – volumetric parameters of media, and it’s value should correspond to known ap-

proximations in going from anisotropy case to isotropic case. 

Traditional relative phase permeability representation for isotropic media is a particu-
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where when i ≠ j the indexes i, j, l form a cyclic rearrangement of 1, 2, 3, and when i = j all 

indexes are equal (i = j = l); but summation with respect to i is not taken. Note, that to get 

relative phase permeability the diagonal components of α
ijK -tensor are divided by correspond-

ing components of Kij-tensor. This approach is impossible for the non-diagonal components, 

because the corresponding non-diagonal component of Kij-tensor equals zero. 

Therefore relative phase permeability for a nondiagonal component is obtained by di-

vision by one of the main components of Kij-tensor. In eg. (9) there’s one of the possible va-

riants in i, j, l – indices forming cyclic rearrangement. 

Equ. (9) determine phase permeability for triclinic symmetry of filtration properties, 

so they are the most general, and phase permeabilities for all anisotropy types (symmetry 

classes) can be obtained through them. For monoclinic symmetry it’s needed to set 

02313 == αα
kk  in equations (9), for orthotropic symmetry, 0122313 === ααα

kkk , for transversal 

– isotropic symmetry it’s needed to add the equality k11 = k22 to the latter condition. 

 

The analysis of the dependence of the main axes of phase permeabilities tensor on satu-

ration 
To keep our following considerations more visualized, an analysis of the dependence 

of the main axes on saturation for tensors with monoclinic symmetry of filtration properties is 

done. It’s well known, that any symmetric tensor of 2-nd rank can be reduced to the main 

axes, in which it takes a diagonal form. In particular, for monoclinic symmetry of filtration 

properties the position of one main axis is known. So, reducing the main axes is realized by 

rotation around that principle axis. Assuming that a principle axis consides with axis Z, then a 

rotation angle is defined by 
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However, if in equation (10) all the component values are constant and angle φ is 

fixed, then in equation (11) the tensor component values depend on saturation and change; 

therefore the angles φα values can change also. Indeed, as it was shown in experiment [8], the 

phase and relative phase permeability values in anisotropic media are dependent on direction, 

and higher absolute permeability values correspond to higher phase and relative phase per-

meability values. In the representation of the relative phase permeability functions it’s taken 

, for trans-
versal – isotropic symmetry it’s needed to add the equality 
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That the indices εi and βi should be represented through invariant values defining the 

filtration – volumetric parameters of media, and it’s value should correspond to known ap-

proximations in going from anisotropy case to isotropic case. 

Traditional relative phase permeability representation for isotropic media is a particu-

lar case for (7), (8). For the general case of triclinic symmetry of filtration properties the ap-

proximations of the relative phase permeability function can be represented as 
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where when i ≠ j the indexes i, j, l form a cyclic rearrangement of 1, 2, 3, and when i = j all 

indexes are equal (i = j = l); but summation with respect to i is not taken. Note, that to get 

relative phase permeability the diagonal components of α
ijK -tensor are divided by correspond-

ing components of Kij-tensor. This approach is impossible for the non-diagonal components, 

because the corresponding non-diagonal component of Kij-tensor equals zero. 

Therefore relative phase permeability for a nondiagonal component is obtained by di-

vision by one of the main components of Kij-tensor. In eg. (9) there’s one of the possible va-

riants in i, j, l – indices forming cyclic rearrangement. 

Equ. (9) determine phase permeability for triclinic symmetry of filtration properties, 

so they are the most general, and phase permeabilities for all anisotropy types (symmetry 

classes) can be obtained through them. For monoclinic symmetry it’s needed to set 

02313 == αα
kk  in equations (9), for orthotropic symmetry, 0122313 === ααα

kkk , for transversal 

– isotropic symmetry it’s needed to add the equality k11 = k22 to the latter condition. 

 

The analysis of the dependence of the main axes of phase permeabilities tensor on satu-

ration 
To keep our following considerations more visualized, an analysis of the dependence 

of the main axes on saturation for tensors with monoclinic symmetry of filtration properties is 

done. It’s well known, that any symmetric tensor of 2-nd rank can be reduced to the main 

axes, in which it takes a diagonal form. In particular, for monoclinic symmetry of filtration 

properties the position of one main axis is known. So, reducing the main axes is realized by 

rotation around that principle axis. Assuming that a principle axis consides with axis Z, then a 

rotation angle is defined by 
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However, if in equation (10) all the component values are constant and angle φ is 

fixed, then in equation (11) the tensor component values depend on saturation and change; 

therefore the angles φα values can change also. Indeed, as it was shown in experiment [8], the 

phase and relative phase permeability values in anisotropic media are dependent on direction, 

and higher absolute permeability values correspond to higher phase and relative phase per-

meability values. In the representation of the relative phase permeability functions it’s taken 
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that principle axis. Assuming that a principle axis consides 
with axis Z, then a rotation angle is defined by
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That the indices εi and βi should be represented through invariant values defining the 

filtration – volumetric parameters of media, and it’s value should correspond to known ap-

proximations in going from anisotropy case to isotropic case. 

Traditional relative phase permeability representation for isotropic media is a particu-

lar case for (7), (8). For the general case of triclinic symmetry of filtration properties the ap-
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where when i ≠ j the indexes i, j, l form a cyclic rearrangement of 1, 2, 3, and when i = j all 

indexes are equal (i = j = l); but summation with respect to i is not taken. Note, that to get 

relative phase permeability the diagonal components of α
ijK -tensor are divided by correspond-

ing components of Kij-tensor. This approach is impossible for the non-diagonal components, 

because the corresponding non-diagonal component of Kij-tensor equals zero. 

Therefore relative phase permeability for a nondiagonal component is obtained by di-

vision by one of the main components of Kij-tensor. In eg. (9) there’s one of the possible va-

riants in i, j, l – indices forming cyclic rearrangement. 

Equ. (9) determine phase permeability for triclinic symmetry of filtration properties, 

so they are the most general, and phase permeabilities for all anisotropy types (symmetry 

classes) can be obtained through them. For monoclinic symmetry it’s needed to set 

02313 == αα
kk  in equations (9), for orthotropic symmetry, 0122313 === ααα

kkk , for transversal 

– isotropic symmetry it’s needed to add the equality k11 = k22 to the latter condition. 

 

The analysis of the dependence of the main axes of phase permeabilities tensor on satu-

ration 
To keep our following considerations more visualized, an analysis of the dependence 

of the main axes on saturation for tensors with monoclinic symmetry of filtration properties is 

done. It’s well known, that any symmetric tensor of 2-nd rank can be reduced to the main 

axes, in which it takes a diagonal form. In particular, for monoclinic symmetry of filtration 

properties the position of one main axis is known. So, reducing the main axes is realized by 

rotation around that principle axis. Assuming that a principle axis consides with axis Z, then a 

rotation angle is defined by 
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However, if in equation (10) all the component values are constant and angle φ is 

fixed, then in equation (11) the tensor component values depend on saturation and change; 

therefore the angles φα values can change also. Indeed, as it was shown in experiment [8], the 

phase and relative phase permeability values in anisotropic media are dependent on direction, 

and higher absolute permeability values correspond to higher phase and relative phase per-

meability values. In the representation of the relative phase permeability functions it’s taken 
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 laboratory test data are processed and empirical constants are determined using the expli-

cit form of relative phase permeability functions. 

Below we’ll consider an explicit representation of the relation (3) between the phase 

and absolute permeabilities and the laboratory method for the determination of non-diagonal 

tensor components of phase permeability for media with monoclinic and triclinic symmetry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Scheme of the core-sample cut out 

 

Representation of phase and absolute permeabilities relation to tensor components of 

phase permeabilities with triclinic symmetry of filtration properties 
Explicit form of relationship (3) is determined by anisotropy type (symmetry group) of 

filtration properties. 

In the case of triclinic symmetry of filtration properties the position of the main axes 

of tensors α
ijK  and Kij is unknown, therefore these tensors contain all six components. For 

transformation of the relationship (3) it’s necessary first to define tensor components of abso-

lute permeabilities. After all the tensor Kij components are determined it can be reduced at the 

main axes. Then relationship (3) can be written in the main axes. The relationship get simpli-

fied and take a form: 
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where αξmn  are tensor components of relative phase permeabilities in the coordinate system, 

coinciding with the main axes of the absolute permeability tensor; Ki are main values of the 

absolute permeability tensor. 

Using relationship (4) it can be shown, that tensors α
ijK  and Kij can belong to different 

symmetry groups. Indeed, assuming that all the tensor components αξmn  are non-zero, then 

tensors α
ijK  and Kij have different symmetry axes. Moreover, the symmetry of tensor Kij can 

 

 to the main axes it’s needed to turn the coordinate 
system at angles 
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be increased from triclinic to orthotropic one and then to transversal – isotropic and isotropic, 

successively supposing that K1 = K2 ≠ K3 and K1 = K2 = K3. In any case the phase permeability 

tensors will have triclinic symmetry, i.e. they will be characterized by all six non-zero com-

ponents. Hence, the symmetry of the filtration properties tensors α
ijK  and Kij may not coin-

cide. In which case relative phase permeability tensors symmetry should coincide with phase 

permeability tensors symmetry.  

For solution of the applied problems, a case of great interest, is when limiting values 

of saturations differ from zero and 1. Therefore let’s consider the generalization of explicit 

form for relative phase permeability functions for this particular case. The general form of the 

relative phase permeability functions (4) can be written as: 

liikiikiji θξθξξϕα
1;++=  (5) 

where 
jjiijiii KKKK == θϕ αα , . 

Eq. (5) should satisfy the following conditions: when S = S(i)*, 0  1
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i =ϕ . Assuming that all the functions are of the same order, then (5) can be trans-
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where summation with respect to (i) is absent. 

The multipliers (S – S(i)*) and (S*(i) – S) ensure satisfaction of the above mentioned 

conditions and correspond to the common approximation of relative phase permeability for 

isotropic porous media. The multiplier I1(K)/Ki, where I1(K) is a first invariant of absolute 

permeability tensor, is due to anisotropy. Then, for approximation of the functions, it’s 

needed to take into account the condition at another range of the interval saturation change. 

Initially the phase permeability functions were constructed in the interval S* ≤ S ≤ 1 (for wa-

ter) and 0 ≤ S ≤ S* (for oil or gas). In this case ϕα
 values at the interval boundaries were fixed: 
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are determined experimentally. Thus, it’s needed that the initial relative phase permeability 

representation φ = [(S – S*)
ε
/(1 – S*)] for isotropic media to be replaced by  
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where αi, bi, εi, βi are parameters experimentally determined; in which case ( )( )*1
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, so:
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That the indices εi and βi should be represented through invariant values defining the 

filtration – volumetric parameters of media, and it’s value should correspond to known ap-

proximations in going from anisotropy case to isotropic case. 

Traditional relative phase permeability representation for isotropic media is a particu-

lar case for (7), (8). For the general case of triclinic symmetry of filtration properties the ap-

proximations of the relative phase permeability function can be represented as 
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where when i ≠ j the indexes i, j, l form a cyclic rearrangement of 1, 2, 3, and when i = j all 

indexes are equal (i = j = l); but summation with respect to i is not taken. Note, that to get 
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ing components of Kij-tensor. This approach is impossible for the non-diagonal components, 

because the corresponding non-diagonal component of Kij-tensor equals zero. 

Therefore relative phase permeability for a nondiagonal component is obtained by di-

vision by one of the main components of Kij-tensor. In eg. (9) there’s one of the possible va-

riants in i, j, l – indices forming cyclic rearrangement. 

Equ. (9) determine phase permeability for triclinic symmetry of filtration properties, 
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By analogy reducing the phase permeability tensors α
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However, if in equation (10) all the component values are constant and angle φ is 

fixed, then in equation (11) the tensor component values depend on saturation and change; 

therefore the angles φα values can change also. Indeed, as it was shown in experiment [8], the 

phase and relative phase permeability values in anisotropic media are dependent on direction, 

and higher absolute permeability values correspond to higher phase and relative phase per-

meability values. In the representation of the relative phase permeability functions it’s taken 
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section of the related phase permeability demonstrative 
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In fig. 5 the calculation results are shown as the cross-sections of the indicatory sur-

faces of filtration properties. From the polar diagrams shown it’s seen, that with increasing 

saturation a turn of the main axes of the tensors in opposite directions is taking place and 

that’s confirmed by the experimental results [8]. 

 
Fig. 5. Cross-section of the absolute and phase permeability tensor directional surfaces for 

water (a) and oil (b) under saturation values; 1 – s = 0,2; 2 – s = 0,4; 3 – s = 0,6; 4 – absolute 

permeability 
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Let’s assume, that porous media has monoclinic symmetry of filtration properties; ob-

viously, in case of triclinic symmetry the considerations would be analogous. Further we’ll 

assume, that the position of the known main axis of the absolute permeability tensor coincides 

with the z-axis. In this case the non-zero non-diagonal components of the phase permeability 

tensors are the α
12k  components. 
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The method for the laboratory determination of non diagonal component phase permeability tensors [2]

Let’s assume, that porous media has monoclinic sym-
metry of filtration properties; obviously, in case of tri-
clinic symmetry the considerations would be analogous. 
Further we’ll assume, that the position of the known main 
axis of the absolute permeability tensor coincides with 
the Z-axis. In this case the non-zero non-diagonal com-
ponents of the phase permeability tensors are the 
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To determine α
12k  it’s necessary first to determine the diagonal components values α

11k  

and α
22k . Therefore to perform laboratory studies it’s necessary to cut out three samples. Two 

of them are cut out along two main directions of the tensor kij in the XY-plane. To make our 

calculations more convenient, the third sample can be cut out along the bisectrix of the angle 

between two main directions. The determination of phase and relative phase permeabilities 

for diagonal components of the tensors can be done by conventional methods [6]. After ter-

mination of phase and relative phase permeabilities along the main directions of the tensor kij, 

the determination of the component α
12k  can be as follows. For doing it, we’ll use two model 

problems: flow through a «thin» plate and movement in a «long» bar [6]. In the first case a 

directional permeability value can be defined, and in the second case – a directional filtration 

resistance. Laboratory equipment enables to create a flow in samples, which are neither a thin 

plate, nor a long bar. Therefore to define the debit dependence on pressure drop we can use an 

approximate formula based on the above mentioned solutions: 
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Q
α
 is debit of α-th phase, ∆p – pressure drop at distance L, S is area of sample cross-section, D 

– sample diameter, ni – vector components, setting a direction of symmetry axis of core, α
ijr  – 

tensor of filtration resistance. 

Since the tensor α
ijr  and α

ijk  are inter-convertible, then we have: 

ijilij rk δαα =⋅  (13) 

where δij – Kroneker symbol, 



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
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≠
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,0

,1
δ . 

Using equ. (12) we calculate tensor α
ijr  components by the known tensors α

ijk  compo-

nents. Then from (13) we get an equation, where the only unknown value is a component α
12k . 

Assuming that α
12k  lies between 0 and 1, the component value can be found by fitting with 

minimization of the difference between experimental and theoretical debit value. Theoretical 

debit value is obtained by the calculation of component α
12k . 

The generalization of a model with dual porosity on anisotropic fractured – porous 

media is presented in ref. [3]. 

Allowance of anisotropy of the reservoir and filtration properties enables more ade-

quate description of filtration flows, and this, in turn, allows optimization of oil recovery 

processes. 

 

Conclusion 
Tensor nature of absolute and relative phase permeabilities (RFP) is shown theoreti-

cally and is confirmed by experiments. General representation of the component RFP tensors 

is given for different anisotropy types. A new method for complex laboratory studies of aniso-

tropic core-samples is suggested for the determination of filtration properties of anisotropic 

porous media. For two-phase flows, the analysis of new effects due to anisotropy is given. 

This knowledge enables more adequate simulation of filtration flows and allow optimization 

of oil-gas recovery processes. 
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The generalization of a model with dual porosity on 

anisotropic fractured-porous media is presented in ref. [3].
Allowance of anisotropy of the reservoir and filtration 

properties enables more adequate description of filtration 
flows, and this, in turn, allows optimization of oil recovery 
processes.

Conclusion

Tensor nature of absolute and relative phase perme-
abilities (RFP) is shown theoretically and is confirmed by 
experiments. General representation of the component RFP 
tensors is given for different anisotropy types. A new method 
for complex laboratory studies of anisotropic core-samples 

is suggested for the determination of filtration properties of 
anisotropic porous media. For two-phase flows, the analysis 
of new effects due to anisotropy is given. This knowledge 
enables more adequate simulation of filtration flows and 
allow optimization of oil-gas recovery processes.
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