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Modeling and seismic migration in anisotropic media 
as a function of azimuthal angle – HTI(Ψ)

In this paper, we present a new way of modeling in an anisotropic medium based on a pseudo-acoustic one-way equa-
tion, derived from the full equations system of elasticity using eigenvalues of dispersion equation – time-frequency. 
The method was shown on the examples of signals propagation in anisotropic medium HTI(Ψ) (Horizontal Transverse 
Isotropy) as function of azimuthal angle Ψ and zero-offset time sections for anticline model. The correctness of the 
modeling results was verified by new migration MG(F-K) in wavenumbers (K) – frequency (F) domain with a depth 
operator of extrapolation, which uses a vertical wavenumber derived from dispersion relation.

Key words: Transverse Isotropy (TI), Horizontal Transverse Isotropy (HTI), dispersion relation, migration in 
wavenumber-frequency domain MG(F-K), Thomsen’s parameters, azimuthal migration.

Modelowanie i migracja sejsmiczna w anizotropowym ośrodku HTI(Ψ) w funkcji kąta 
azymutalnego Ψ

W artykule przedstawiono nowy sposób modelowania w ośrodkach anizotropowych, bazujący na jednostronnym 
równaniu falowym wyprowadzonym z pełnego systemu równań sprężystości i stosującym wartości własne równania 
dyspersyjnego tj. czasową częstotliwość. Metoda została zaprezentowana na przykładach propagacji w ośrodkach 
HTI(Ψ) (Horizontal Transverse Isotropy) w funkcji kątów azymutalnych Ψ oraz na sekcjach zero-offset dla mode-
lu antykliny. Poprawność rezultatów modelowania została zweryfikowana za pośrednictwem migracji MG(F-K)  
w dziedzinie liczb falowych (K) i częstotliwości (F) stosującej operator głębokościowej ekstrapolacji z użyciem 
pionowej liczby falowej wyprowadzonej z relacji dyspersyjnej.

Słowa kluczowe: poprzeczna izotropia, poziomo-poprzeczna izotropia, relacja dyspersyjna, migracja MG(F-K) 
w dziedzinie liczb falowych i częstotliwości, parametry Thomsena, migracja azymutalna.

Anisotropic media of HTI type (Horizontal Transverse 
Isotropy) (Fig. 1) represented by the system of vertical, paral-
lel isotropic planes are substantial elements of deep geologic 
structures and facial sequences, which in practice determines 
the necessary condition to determine the direction of cracks 
in shale rocks by the seismic investigations. That means, 
the velocity of compressional wave in isotropy plane i.e. 
in vertical plane, differs from the velocity in perpendicular 
direction to isotropy plane and it can constitute the indicator 
of the cracks orientations [29].

The imaging of geological structures in this case, re-
quires knowledge of velocity as a function of azimuthal angle  

Introduction

Fig. 1. Draft presents a HTI media – θ indicates a dip angle, 
Ψ – an azimuthal angle
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In general, forward modeling of wavefields in anisotro-
pic media should be executed by solving the full system of 
elastic equations determined by Hooke’s law and equations 
of motion. It follows from this, that each component of stress 
tensor Tij is a linear function of strain Elk:

	

 lkkllk

klij

UUE

EDT

,,

,

21
and



 

  	
(1)

where 
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kl ∂
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=,   is a derivative of l component of displace-

ment with respect to the k-th coordinate.

In relation (1) stiffness tensor is shown in the form of 
symmetrical matrix D q,Y (6 × 6), whose components are 
functions of dip angle θ, angle Ψ between strike and measure-
ment line, velocities of compressional and shear waves, and 
anisotropy parameters. Tensor D q,Y, received as the result of 
the transformation of tensor C, characterizes VTI (Vertical 
Transverse Isotropy) media with vertical symmetry according 
to Bond’s relation [4, 32].

Using the equations of motion we have:
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where ρ is density of medium and subscript ”ij,j” indicates 
the partial derivative with respect to the j-th coordinate.

The equations (2) constitute the full system of second 
order equations with respect to time, its solution is a very 
laborious computation procedure. Therefore, the tendency 
arose to simplify the way of computation. Alkhalifah [1, 2] 
has introduced into practice pseudo-acoustic fourth order 
equations in space coordinates which for the VTI model 
proved to be a promising approximation and an inspiration 
for other modifications [9, 10, 12, 31].

The essential assumption for this type of approximation 
is the acceptance, that the velocity of a shear wave is zero 
VSV = 0. This assumption is justified by negligible influence 
of the velocity VSV on the phase velocity of the compressional 
wave [1, 2].

For HTI(Ψ) model we will use the same approach that was 

applied to wave propagation in transverse isotropy media TI 
(VTI, TTI) [17, 18].

This approach relies on the determination of the eigen-
value – time-frequency ωa from matrix dispersion relation:
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(3)

that is obtained as a result of Fourier transform application 
(x → kx, y → ky, z → kz, t → ωa) to the system of equation (2), 
where:
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and kx, ky, kz are components of wave vector expressed in 
wavenumbers.

Solution of equation (3) requires the compliance of con-
ditions:
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where det means determinant of matrix A.
The determinant is expressed by relation:

detA = H(kx, ky, kz, θ = 90°,Y) – ωa
6 + ωa

4B – ωa
2C = 0   (6)

For a 2D case, when ky = 0, and for acoustic model of 
propagation, i.e. for velocity of shear wave VSV = 0, we re-
ceive relation:
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where dij are components of stiffness tensor D q,Y (see Appendix).
In range of variability of the parameters ε (0.3; –0.2) and 

between the strike of isotropy plane (plane of cracks) and the 
direction of measurements line and an application of migra-
tion which takes into consideration a real run time of wave 

in media. Thus, the task in reality is reduced to solving the 
question of compressional waves propagation in anisotropic 
media HTI(Ψ) as a function of azimuthal angle Ψ.

Theory in outline
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δ (0.2; –0.2) one can allow that function H ≈ 0 and then from 
relation (6) we obtain biquadratic polynomial:

(8)

Furthermore, the elimination of components d66, d63, d16 
from (8) leads to equation:
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From relation (6) (or equivalent third order Cardano’s 
equation) and from biquadratic equations (8–9) and also from 
biquadratic equations in VTI and TTI media (Tilted Trans-
verse Isotropy) [18] it follows this, that ωa as eigenvalue of 
dispersion relations is expressed as follows:

ωa = Vp ∙ ka	 (10)

where Vp is the velocity of a compressional wave in a direction 
along symmetry axis and ka = ka(kx, kz, q, Y, ε, δ) is a function 
of anisotropy parameters ε, δ, the components of wave vector 
k = (kx

2 + kz
2)1/2 and angles: θ and Ψ.

The relation (10), the result of velocity separation Vp as 
solutions for eigenvalue, has a universal character for TI 
models class. Through multiplication of both sides of the 
equation (10) by scalar field P(kx, kz, ωa) in wavenumber 
and frequency domain and application of Fourier transform  
(ωa → t) we obtain:
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i.e. one-way wave equation, or in two-side version
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called pseudo-acoustic equations.
General solution of equation (12) is the relation expressed 

in Fourier transform (kx → x, kz → z)
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In inhomogeneous media equation (11) should be replaced 
by pseudo-spectral form:
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where F(x → kx, z → kz) and F –1(kx → x, kz → z) are opera-
tors of Fourier transform from (x, y, z) domain to (kx, ky, kz) 
domain and vice versa.

Relation (13) for t = 0, i.e. P(x, z, t = 0) is initial condi-
tions for one-way equation (14).

Numerical solution of equation (14) can be obtained by 
means of the Taylor’s series limited to third term
	

( ) ( )
=

Δ
∂

∂=
3

0 !
0,,,,

l

l

l

l

l
t

t
zxPtzxP  	 (15)

In isotropic case, I. Gazdag [14] proved stability of 
scheme (15). In general case, referred to equation (9) the 
stability demands the fulfillment of the condition:

q > 0

1 + 2δ > 0
and
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where q = 1 +2ε, ηa = 2(ε – δ), ε, δ – Thomsen’s parameters.
The stability of numerical solution with method employ-

ing the differencing schema is satisfied as for “isotropy” case 
[14], i.e.

ωaΔt ≤ 2

where Dt is time increment. In practice step Dt = 0.5 ms seems 
to be the reasonable compromise between the stability and 
the accuracy of the method.
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Migration

In media of the TI type most frequently Kirchhoff’s mi-
gration is used in practice, because of the relative simplicity 
of this method. The Kirchhoff’s migration requires multi-
patching of seismic rays [8, 13, 26, 27, 28] or application of 
the finite difference method [3]. Strong contrasts of velocity 
lead to some problems for both methods, which can create  
significant errors of depth imaging.

Podwin P. and Lecompte I. [25] proposed algorithm for 
strong heterogeneous media in the case that the wavefront is 
approximated by plane wave well. In monoclinal media with 

inclined axis of symmetry TTI Kumar D., Sen M., Ferguson R. 
[22] developed algorithm by Faria and Stoffa [11] taking into 
account anisotropy parameters as functions of space coordi-
nates. Reverse time migration takes special position for the ef-
fectiveness of imaging structures [5, 10, 12, 24, 30]. For TI type 
media algorithms were worked-out for VTI and TTI models.

In this paper we present MG(F-K) migration which will be 
adapted to the imaging of 2D anisotropic media of the HTI(Ψ) 
type. This migration was created for compressional waves in 
pre-stack version [16, 19, 20] and in post-stack version [19].
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The starting point for the migration process is the depth 
extrapolation of the wavefield U(x, z, ω) from level zj to 
level zj + Dz

Uzj + Dz = Fj(x, ω)U '(x, zj + Dz, ω)	 (17)

where U '(x, zj + Dz, ω) is Fourier transform (kx → x) of the 
wavefield

),,(),,(' 0 ωω jx
zik
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and where: x is the horizontal coordinate along the measure-
ment profile, j indicates subsequent depth interval zj+1 – zj = Dz, 
kz0

HTI denotes vertical wavenumber in homogenous media HTI(Ψ).
Relation 
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determinates the correction of the wavefield and is the sum 
of Neumann’s series, and Mj(x, ω) denotes
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where kz
HTI is vertical wavenumber in heterogeneous media, 

i.e. where velocity Vp and Thomsen’s parameters ε and δ are 
functions of x space coordinate.

It follows from relations (17–19) that this migration has 
two stages. In first stage, the extrapolation is made in homo-
geneous media for constant velocity Vp and parameters ε and 
δ in range of measurement interval. From practical point of 
view it is convenient to use average values in the interval of 
measurement. In second stage the correction of wavefield 
proceeds by function Fj(x, ω).

The stability for down extrapolation process succeeds 
through the convergence of Neumann’s series: 
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what is done if condition
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is fulfilled, which finally assures stability of extrapolation.

Basic equation for wavefields depth extrapolation

Pre-stack migration

The equations (17–20) should be treated as the starting 
point for the depth extrapolation process before stacking 
of wavefield exited by many receivers, deployed along the 
profile. Imaging of the depth target is finished when the 
coincidence of sources and receivers position is fulfilled in 
time t = 0. It means that sources and receivers should be dis-
placed in depth, until they reach the time-space coincidence. 
In the rubric of wave equations that means the alternate use 
of extrapolation vs. source and receivers.

Denoting the coordinates of the sources positions by s 
and receivers by g we obtain for extrapolation the following 
relation:
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where U 'j(g, s, zj + Dz, ω) is double Fourier transform (kg → g, 
ks → s) of wavefield:
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in other words the function of the horizontal wavenumber kg 

and ks, which corresponds to space coordinates of sources s 
and receivers g.

Correction filters Fj(g, Dz, ω) and Fj(s, Dz, ω) relating to 
receivers and sources are expressed by analogical relations as 
(19) and (20) with the difference that x coordinate should be 
substituted by s and g coordinates. These coordinates define 
slowness S and Thomsen’s parameters in the expression of 
vertical wavenumbers kzs

HTI and kzg
HTI.

It is convenient to use common reference values of vertical 
wavenumber in relations for Mj(s) and Mj(g).

The extrapolation procedure under relations (23–24) 
requires the application of double Fourier transformation 
(g → kg, s → ks) to the wavefield in order to shift receivers 
and sources on subsequent level zj of depth. Imaging of depth 
structures is done at point of coincidence for sources and 
receivers when s = g for time t = 0:

	 (25)

where Ujmigr.
 stands for wavefield at depth zj + Dz.

The stability of the extrapolation algorithm requires the 
convergence of Neumann series analogously to relation (21).

ωω
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In case of zero-offset migration one assumes that x co-
ordinate on the profile is the coordinate of source as well as 
the receiver. The wavefield at registration level z = 0 one can 
obtain in the process of modeling, provided that at each point 
of the velocity discontinuity wave is simultaneously excited at 
time t = 0 and propagates into z = 0 level, with velocity equal 
½ of real velocity [23]. Therefore in the equations describing  
waves propagation, 2S slowness should be used instead of S. 
It should be noted that the approximation of the zero-offset 
section is in practice the stacked time section. 

In case of zero-offset migration, the depth extrapolation 

formulated by (17) will be expressed as follows:
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where U '(x, zj + Dz, ω) is defined by relation (18).
Imaging of depth structures is obtained as a result of 

Fourier transform (ω → t) for t = 0 time:
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which leads to the summation of the wavefield for a useful 
range of frequency.

Depth extrapolation operators

Vertical wavenumbers kzs
HTI and kzg

HTI are solutions of 
dispersion relation (6), they can be expressed as follows:
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Neglecting d66, d63, d16 components of elasticity tensor  
D90°.Ψ as small values in comparison to d11, d33, d13 we have 
approximation

(29)

where S = Vp
–1; ηa = 2(ε – δ).

Numerical experiments

Modeling of signals propagation
A series of signals propagation modeling of “spike” 

type wavelet in anisotropic media with parameters: ε = 0.3; 
δ = –0.1, Ψ = 0°, 30°, 45°, 60°, 90°, 120° for azimuthal angles 
and VP = 2000 m/s for velocity was performed (Fig. 2–7).

Snapshots showing waves excited at point source (0.0), 
present the moment of time t = 0.4 s. The exact algorithm of 
propagation (6) was applied. In general, the series of “spike” 
type propagating waves in the XZ plane shows their correct-
ness and high precision. Visual estimation indicates the con-
vergence of propagation ways with assumptions, numerically 
it shows the error ~0.2% for time t = 0.4 s.

All images for azimuthal angle range 0°–120° are de-
void of the “diamond shape” type noise, so characteristic 
for propagation described by pseudo-acoustic equations in 
space coordinates [7]. In the computations, one-way equation 
(11) was applied, then two image versions, “upward” and 
“downward” were stuck together and shown as one. Visible 
discontinuities of signals in some images are caused by the 

presentation of every fourth trace, which leads to the loss of 
signal coincidence at places of flatness of wavefront. This 
occurrence is random.

Figures 8–9 exhibit a composition of images of wave 
propagation in media with parameters ε = 0.3 and δ = 0.1 for 
angles Ψ = 0°, 15°, 30°, 45°, 60°, 75°, 90° in the XZ plane. 
Here we can observe a velocity decrease with an increase of 
azimuthal angle along the X axis. For angle Ψ = 90° the ve-
locity achieves minimum value, i.e. assuming VP = 2000 m/s 
in a perpendicular direction to the symmetry plane, where-
as in the direction along the Z axis propagation velocity is 
V = Vp (1 + 2ε)1/2 = 2529 m/s. From that we can easily note that 
velocity as function of the azimuthal angle has an ellipsoidal 
character and is expressed as follows:
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This relation indirectly confirms the correctness of depen-
dence velocity VNMO as a function of the azimuthal angle Ψ de-
rived by W. Grechka and I. Tsvankin [15] for 3D dimensions.

Zero-offset migration
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Fig. 2. Snapshot of spike signal propagation from relation (6) 
in moment time t = 0.4 s; anisotropy parameter’s: ε = 0.3; 
δ = –0.1; azimuthal angle Ψ = 0°; steps of computations: 

Δx = Δz = 4m, Δt = 0.5 ms

Fig. 4. Snapshot of spike signal propagation from relation (6) 
in moment time t = 0.4 s; anisotropy parameter’s: ε= 0.3; 
δ = –0.1; azimuthal angle Ψ = 45°; steps of computations: 

Δx = Δz = 4 m, Δt = 0.5 ms

Fig. 3. Snapshot of spike signal propagation from relation (6) 
in moment time t = 0.4 s; anisotropy parameter’s: ε = 0.3; 
δ = –0.1; azimuthal angle Ψ = 30°; steps of computations: 

Δx = Δz = 4 m, Δt = 0.5 ms

Fig. 5. Snapshot of spike signal propagation from relation (6) 
in moment time t = 0.4 s; anisotropy parameter’s: ε = 0.3; 
δ = –0.1; azimuthal angle Ψ = 60°; steps of computations: 

Δx = Δz = 4 m, Δt = 0.5 ms

Fig. 6. Snapshot of spike signal propagation from relation (6) 
in moment time t = 0.4 s; anisotropy parameter’s: ε = 0.3; 
δ = –0.1; azimuthal angle Ψ = 90°; steps of computations: 

Δx = Δz = 4 m, Δt = 0.5 ms

Fig. 7. Snapshot of spike signal propagation from relation (6) 
in moment time t = 0.4 s; anisotropy parameter’s: ε = 0.3; 

δ = –0.1; azimuthal angle Ψ = 120°; steps of computations: 
Δx = Δz = 4 m, Δt = 0.5 ms
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The subject of numerical experiments was the inhomoge-
neous four layers model of anticline, covered by a horizontal 
layer of thickness 500 m (Fig. 10). The velocity of compres-
sional waves, constant in each layer, 
changes from 3.0 km/s to 5.0 km/s.

The wavefield for this zero-offset 
time section was computed by a si-
multaneously exited reflectors meth-
od at t = 0 [23]. A pseudo-spectral 
version of one-way equation was 
used (6) and (11) in view of lateral 
inhomogeneity (14). A part of the 
comprehensive experiment of model-
ing is presented in Fig. 11–14 for an-
isotropy parameters: ε = 0.3; δ = 0.1 
and azimuthal angles: Ψ = 15°, 45°, 
75°, 90°. Analyzing the time sections, 
one can note that for increasing azi-
muthal angles, curves of runtimes 
decrease, whereas summits of an-
ticline change only a little, mainly 
displacing in a lateral direction. In 
light of the analyses of propagation 
results in dependence on azimuthal 
angles Ψ (Fig. 8–9) this occurrence is 
fully justified by maximum velocity 
V = Vp (1 + 2 ε)1/2 in vertical direc-
tion and by a decrease of velocity in 
lateral direction.

Fig. 8. Comparison of the snapshot of propagation 
from (6) in moment time t = 0.4 s; anisotropy 

parameters: ε = 0.3; δ = 0.1; for azimuthal angle: 
Ψ = 0° – in red, Ψ = 15° – in green, Ψ = 30° – in 
blue, Ψ = 45°– in crimson, Ψ = 60° – in violet,  

Ψ = 75° – in orange, Ψ = 90° – in black

Fig. 9. Velocity as a function of the azimuthal angle Ψ in the first 
quarter of the clockwise polar coordinate system. The ellipsoid 

character of velocity (Ψ) is seen. In the left part of the figure we have 
a series of wavefronts which determine the length of propagation 

paths for time t = 0.2 s, ε = 0.3; δ = 0.1

Modeling and migration of zero-offset time sections

Fig. 10. The geometry of velocity model

Fig. 11. The zero-offset time section from relations (6);  
anisotropy parameters ε = 0.3; δ = 0.1; azimuthal angle Ψ = 15°

Depth mappings made with the use of zero-offset migra-
tion (Fig. 15–18) demonstrate practically invariable images 
for various azimuthal angles, as expected.
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Fig. 15. The migration according to (28) for the zero-offset time section Fig. 11 (relation 6);  
anisotropy parameters ε = 0.3; δ = 0.1; azimuthal angle Ψ = 15°

Fig. 13. The zero-offset time section from relations (6); anisotropy parameters ε = 0.3; δ = 0.1; azimuthal angle Ψ = 75°

Fig. 14. The zero-offset time section from relations (6); anisotropy parameters ε = 0.3; δ = 0.1; azimuthal angle Ψ = 90°

Fig. 12. The zero-offset time section from relations (6); anisotropy parameters ε = 0.3; δ = 0.1; azimuthal angle Ψ = 45°
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Conclusion

Fig. 16. The migration according to (28) for the zero-offset time section Fig. 12 (relation 6);  
anisotropy parameters ε = 0.3; δ = 0.1; azimuthal angle Ψ = 45°

Fig. 17. The migration according to (28) for the zero-offset time section Fig. 13 (relation 6);  
anisotropy parameters ε = 0.3; δ = 0.1; azimuthal angle Ψ = 75°

Fig. 18. The migration according to (28) for the zero-offset time section Fig. 14 (relation 6);  
anisotropy parameters ε = 0.3; δ = 0.1; azimuthal angle Ψ = 90°

We have presented new ways of wave propagation in 
forward and in backward projection, i.e. seismic migration 
in anisotropic media of the HTI type in the function of azi-
muthal angle Ψ.

Forward modeling is described by pseudo-acoustic equa-
tions (in one-way or in two-sided versions) in wavenumber 
and time-frequency domain derived as eigenvalues from the 
dispersion relation.

This way of modeling is devoid of the “diamond shape” 
type noise, characteristic for pseudo-acoustic equations in 
space coordinates and enables to reach high accuracy (with 
error ≈0.2% for time 0.4 s). The forward modeling and “back 
propagation” as well, i.e. migration are based on disper-
sion relation derived from the full system of elasticity equa-
tions. In case of migration it is necessary to calculate vertical 
wavenumbers as function of time, frequency, wavenumbers, 
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Appendix

The tensor components as the a function of dip angle θ (for +θ) and azimuthal angle Ψ are as follow:
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