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Determination of Basic Reservoir Parameters in 
Shale Formations as a Solution of Inverse Problem 
in the Computer Assisted History Matching of their 
Simulation Models. Part II – Hybrid Optimization 
Algorithm

The paper presents a hybrid optimization algorithm as a practical method to solve the inverse problem of simulation 
model calibration process. The method is applied to determine basic reservoir parameters in shale formations as 
a result of the process carried out for their models. Due to some specific features of the problem including its non-
linearity and the large size of the solution space, an algorithm that can be employed in the process of model automatic 
calibration has to run fast and be effective in finding acceptable solution using limited number of simulations. The 
selection of an appropriate global optimization method is crucial in the situation of many expected local minima of 
the problem. One of the stochastic sampling method used and presented in the paper is the method of Particle Swamp 
Optimization (PSO). Such a method is characterized by a simple concept, fast convergence, and intelligent balance 
between searching and testing of the solution space. Besides the PSO method three other elements are combined to 
result in the effective solution of the problem. They include: search with stable Levy distribution of iteration step 
size, Latin hypercube sampling and response surface. The combination of the elements employs both deterministic 
and stochastic approaches that make the proposed solution both robust and effective. The algorithm was positively 
tested for convergence and performance using special functions that are commonly applied for such purposes.

Key words: reservoir simulation models, inverse problem, optimization methods, particle swarm optimization.

Rozpoznanie parametrów formacji łupkowych poprzez rozwiązanie problemu odwrotnego 
metodą wspomaganej komputerowo kalibracji modeli symulacyjnych. Część 2 – hybrydowy 
algorytm optymalizacyjny
W pracy przedstawiono hybrydowy algorytm optymalizacyjny, stanowiący metodę praktycznego rozwiązania ka-
libracyjnego problemu odwrotnego. Ze względu na rodzaj problemu, jego nieliniowość oraz rozmiar przestrzeni 
rozwiązań, algorytm stosowany w procesie automatycznej kalibracji modelu symulacyjnego musi szybko opero-
wać w wielowymiarowej przestrzeni rozwiązań oraz skutecznie poszukiwać dobrych rozwiązań, przy ograniczo-
nej liczbie symulacji. Wybór odpowiedniej metody optymalizacji ma szczególne znaczenie w sytuacji, gdy poszu-
kujemy oszacowania wielu parametrów, przy obecności wielokrotnych minimów lokalnych. Właśnie umiejętność 
radzenia sobie z obecnością minimów lokalnych była jedną z głównych przyczyn rozwoju metod optymalizacji, 
opartych na próbkowaniu stochastycznym. Jedną z odmian próbkowania stochastycznego są metody oparte na tzw. 
inteligencji roju, do których należy przedstawiona w artykule metoda optymalizacji rojem cząstek. Metody te ze 
względu na prostotę idei, zbieżność oraz zachowanie równowagi pomiędzy eksploracją i eksploatacją przestrzeni 
rozwiązań są powszechnie stosowane. Zaproponowany algorytm stanowi element komputerowo wspomaganej ka-
libracji modelu symulacyjnego formacji łupkowej, celem określenia jej istotnych parametrów. W prezentowanej 
metodzie zaimplementowano kombinację nowoczesnych technik, tj. optymalizacja rojem cząstek, przeszukiwanie 
przestrzeni rozwiązań z wykorzystaniem stabilnego rozkładu Levy’ego, próbkowanie hipersześcianu łacińskiego 
oraz funkcja powierzchni odpowiedzi. W celu rozwiązania postawionego problemu, algorytm łączy w sobie tech-
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This paper contains a detailed description of the method 
introduced in [12] to determine significant parameters of shale 
formations (such as permeability and porosity of secondary 
fractures, whose measurement is difficult or simply impos-
sible) via the application of simulation models in the process 
of their calibration. Paper [12] provides general principles 
of the applied method and an example of its use for realistic 
examples of domestic shale formations.

From a theoretical point of view a simulation reservoir 
model is a complex mathematical system, defined by a large 
number of parameters and described by a complicated system 
of non-linear differential equations, while the calibration of the 
simulation model is an attempt to resolve the inverse problem, 
that is such choice of its parameters that the obtained results 
would guarantee matching the observation data. That means 
that when calibrating the simulation model an attempt is made 
to modify the input data (e.g. reservoir rock properties) in 
such a way as to obtain the pre-set values of output quantities 
(e.g. the bottom hole pressure) [4, 15]. However, attempts to 
resolve the problem presented in this way encounter a number 
of difficulties. First of all, the inverse calibration problem 
is ill posed, which means that the calibration does not have 
a unique solution, that is various combinations of changes in 
the model can give very similar results and frequently it is 
difficult to decide, which solution is better. The solution space 
size is another problem. Simulation models have frequently 
a few thousand blocks with defined quantities (porosity, per-
meability etc.). Moreover, the model defines discontinuities 
of the reservoir rock (faults), contacts of deposit fluids and 
their properties, water-bearing layers properties and many 
other quantities. That means that the number of possible 
combinations of those parameters is difficult to define. The 
simulation model calibration consists just in finding among 
those combinations of such one, which ensures matching of 
the model with the observation data. Because of the nature of 
phenomena described by the simulation model, the solution 

space size (possible parameter combinations) and couplings 
between them, the objective function as a measure of match-
ing between the simulation results and the observation data 
usually features many local minima, additionally complicating 
the problem complicated anyway.

So it seems natural to make an attempt to formulate the 
calibration problem as a problem of global optimisation and 
to apply optimisation methods to resolve it, which would 
allow, at least partly, automating the calibration process. 
The algorithm used in the process of automatic calibration of 
a simulation model must operate fast in a multidimensional 
solution space and effectively search for good solutions at 
a limited number of simulations. The choice of appropriate 
optimisation method is especially important in the situation, 
when we are looking for estimation of many parameters at the 
existence of multiple local minima – that is in the situation, 
which we encounter in the case of reservoir model calibra-
tion. One of first attempts to build a mechanism supporting 
the simulation model calibration consisted in formulating the 
problem as the optimum control issue [3]. A few categories 
of methods supporting the simulation model calibration may 
be distinguished today. These are e.g. gradient methods [1], 
particle filtering methods [6, 8, 9] and stochastic sampling 
methods. In recent years the stochastic sampling method 
became very popular, which resulted in its fast development, 
which may be observed in the form of numerous alternative 
implementations [13]. The particle swarm optimisation and 
so-called ant algorithm are among most popular optimisation 
methods included in this group [2, 7, 10, 11]. The presented 
algorithm is based on four numerical techniques creating 
a hybrid optimisation method. These are: the particle swarm 
optimisation, the solution space searching with the use of 
stable Levy distribution, the sampling of Latin hypercube, 
and the response surface function. The algorithm effectiveness 
was verified using the De Jong test environment, carrying out 
tests of its convergence for selected test functions.

niki deterministyczne i stochastyczne, co pozwala na wyeliminowanie wad każdej z metod. Ponadto przedstawio-
no wyniki testów zbieżności zbudowanego algorytmu, potwierdzając przy tym jego efektywność przy przeszuki-
waniu przestrzeni rozwiązań.

Słowa kluczowe: symulacyjne modele złożowe, problem odwrotny, metody optymalizacyjne, optymalizacja rojem 
cząstek.

Introduction

Latin Hypercube Sampling

The Latin hypercube sampling belongs to the group of 
experimental design techniques and is one of most effective 

methods to generate random samples based on the probability 
density function [5]. The idea of the method boils down to 
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the division of the solution space into separate sub-areas via 
the division of variability intervals for each component in the 
N-dimensional solution space into a specified number of sub-
intervals with identical probability of the variable assuming 
values from each sub-interval. Then a specified number of 
samples is generated in such a way as to obtain one sample, 
built based on the combinatorics between all dimensions in 
the solution space, from each sub-space (Fig. 1).

In the presented algorithm the Latin hypercube sampling 
is responsible for preliminary searching of the solution space 
to determine promising directions of searching for the global 
minimum. Initial conditions for the optimisation algorithm 
are determined based on solutions generated by means of 
hypercube sampling.

In the particle swarm optimisation the solutions, referred to 
as particles, cooperate to find the optimum solution [7]. Dur-
ing the optimisation each particle changes its position in the 
solution space via determination of a velocity pseudo-vector 
(position change vector). This vector is modified using the 
information on the search history both for the given particle 
and for the other particles of the swarm.

Such way of solution space searching may be described 
using the following formulae:

position:
                       

x it + 1 = xt
i + v it + 1	 (1)

where time is dimensionless and discrete, Δt = 1
pseudo-velocity: 

v it + 1 = ωvt
i + c1 r1(pt

i – xt
i) + c2 r2(pt

g – xt
i)	 (2)

In each iteration step, t the position of the particle in the 
multidimensional space, xt

i is modified in accordance with 
formula (1) via the velocity vector, v it + 1 (2). The velocity vec-
tor in step t + 1 is a function of the previous velocity vector 
value (vt

i), position x ti, the best solution found by this particle,  
pt

i and the best solution found by all particles, pt
g.

The other quantities existing in formula (2) have been 
defined below:
ω – constant or variable coefficient of inertia,
r1, r2 – random numbers from the (0, 1) interval,
c1, c2 – scaling parameters (variable or constant).

Parameter ω referred to as a coefficient of inertia specifies 
the influence of particle velocity in the previous iteration step 

Fig. 1. The principle of random samples generation by means 
of Latin hypercube sampling using the example of two 

random variables

Particle Swarm Optimisation

on its current position. This is significant for the algorithm 
convergence and in most applications exists in a form depend-
ing on the iteration number:

� � ���� + ����� − ����� ∙ �1 −
� − 1

���� − 1�	 

where:
ωmax, ωmin – maximum and minimum parameter value,
k, kmax – iteration number and the planned number of iterations,

Values ωmax, ωmin depend on the problem being resolved 
and usually the following are assumed:

ωmax ∈ (0.9, 1.1)

ωmin ∈ (0.1, 0.5)

In accordance with the above formulae each particle of 
the swarm searches the solution space modifying the posi-
tion based on its best solution, pt

i and using the information 
about the best swarm solution, pt

g. Scaling coefficients c1, 
c2 allow to control the influence of individual terms of the 
velocity vector on the solution. If c1 = 0, the particle uses 
only the information about the best swarm solution. For  
c2 = 0, the particle searches the solution on its own, not tak-
ing into consideration the solutions obtained by other par-
ticles. Usually constant values of coefficients are assumed,  
c1 = c2 = 2.05. In the form presented above the particle 
swarm optimisation is the basic optimisation method of the 
presented algorithm.

Levy Flight

So-called Levy flight has been applied in the used opti-
misation algorithm to prevent a premature convergence of 

the basic optimisation algorithm [7]. Its job is to introduce to 
the algorithm of an additional stochastic element preventing 

xj

xi

fxj (xj)

fxi (xi)
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too early finding of a local solution, which usually means the 
lack of algorithm convergence. ‘Levy flight’ is a stochastic 
Markov process consisting in searching the variables space, 
where after a sufficiently large number of steps their lengths 
may be described by a stable Levy distribution. This distribu-
tion is usually determined by means of so-called Mantegna’s 
algorithm.

According to this algorithm the step length is described 
by the formula:

� � �
|�|��

 

where:
x, y – random variables with normal distribution,
α – coefficient defining the way of searching, α ∈ (0.3, 2.0).

Standard deviations for random variables distributions,  
x, y have been defined below:

�� = �
�(� � �)	sin	(��2 )
� �� � �

2 ��	2�
���
� �

�

�
�

 

σy = 1

where Γ stands for the Gamma Euler function. 

The distribution defined in such a way is asymptotically 
convergent to a stable Levy distribution for large values of 
the random variable ( ν ⨠ 0). In the original Mantegna’s 
algorithm a non-linear transformation is used at this stage to 
achieve quick convergence of the defined distribution with the 
Levy distribution. However, to determine the searching step 
length it is possible to apply a simplified algorithm used suc-
cessfully in the Cuckoo Search optimisation method [16]. The 
modification of optimisation by the particle swarm used in the 
described algorithm consists in introducing to the solution of 
a disturbance generated in accordance with the Levy distribution.

Response Surface Function

To improve convergence a response surface function 
module was introduced to the algorithm, allowing to interpo-
late the simulation optimisation results based on the already 
obtained values. The response surface function was taken in 
the form of the second degree polynomial, presented below:

y = a0,0 + a0,1 x1 + ... + a0,N xN + a1,1x1
2 + ... + aN,N xN

2 + a1,2 x1x2 + ... +
+ a1N x1xN + a2,3x2x3 + aN – 1,N  xN– 1,N  xN

where:
y	 – objective function,
xi	 – model parameters, i = 1, ...N,
N	 – the number of optimised model parameters,
ai, j	– unknown coefficients.

The suggested shape of the response surface function 
contains a free term, linear, quadratic, and mixed terms, 
which allows both to consider a non-linear dependence of 
the response function, y on the model parameters and interac-
tions between them. However, for unknown coefficients ai, j  
the adopted model is linear, which substantially facilitates 
its application.

Having performed ��≥ �� � ���� � 2�
2 �   simulations for

various values of model parameters it is possible to build and 
resolve a system of equations for coefficients ai j.

�→
���	= �

�����…
�����

�		 ������������������			���� 

In the above formula each vector   stands for a set of 
optimised parameters, identifying the simulation model, while  
y( j) is the value of the objective function at point  . As a re-
sult we obtain a linear system of equations in a matrix form:

 

We obtain coefficients   after the application of the great-
est reliability method, which is an equivalent of the least 
squares method.

 

where   is the matrix of weights – an inverse matrix of 
objective function values covariances y( j)

������ =
1
���
��  

 

In the above formula σ 2yi
 is the variance of the function 

value yi

As a result we obtain the equation for the vector of   
coefficients in the form of

��	� � ������� � ��� � �� � ��� � � 

which solution is as follows 

 

The matrix of the surface coefficients covariances   
existing in the above formula is defined in the following way
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The determination of the response surface function coef-
ficients,   enables determination of its minimum.

Having applied the condition of minimum for the response 
surface function

∂y
∂x����������

� ������� � ��� �� 

we obtain the following system of equations

0�� � ������� � ������� � ������� 
the solution of which is

 

where:

������� =

�
�
�
����
����⋯
⋯
�����

�
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�
�
�
����
����
⋯⋯
����

����
����
⋯⋯
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⋯
⋯
⋯⋯
⋯

⋯
⋯
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⋯

����
����
⋯������
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�
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Moreover, the determination of non-liner transformation 
Jacobian in the form of

xoi = fi (ajk)

 

allows to determine the matrix of coordinates covariances  

 

where:
σ 2xi = (Cxo)ii – variance of xoi,

���� = �������

�� ��

  – correlation of xoi  and xoj .

The implementation of the above reasoning in the existing 
algorithm allows to determine, based on results of reservoir 
simulations, the minimum of the response surface, and to 
determine its error measure (variance) and relationships 
between the matched model parameters.

Hybrid Algorithm

The finally constructed hybrid algorithm operates acc. to 
the following scheme:

1.	The reading in of programme operation parameters (con-
trolling parameters, optimisation method parameters, 
optimised model parameters, their variability intervals 
and definitions of control quantities).

2.	The reading in of observation data (values of control 
quantities for specified simulation times).

3.	Drawing ‘the swarm’ of solutions (group of models) for 
various combinations of optimised model parameters 
values. Parameter values are determined by the method 
of Latin hypercube sampling within the pre-set variability 
intervals. A rule has been adopted that at this stage the 
algorithm operates on 2N + 1 models, where N is the 
number of optimised model parameters. 

4.	Determination of the objective function value, OF (match-
ing function) for each ‘swarm’ model. The function used 
for quantitative assessment of simulation results matching 
to the measurement data is described by the following 
formula:

�� ����
�� ���� �

��� � ���
��� �

���

���

�

���
	 

N – number of control quantities, wi – weight coefficients 
for the adopted control quantities, ni – number of mea-
surements for the i-th control quantity, uij – weight coef-

ficients for measurement points, Oij, Sij – observation data 
and simulation results, respectively, for the i-th control 
quantity and the j-th measurement point.

5.	Saving in the ‘memory’ the values of optimised parameters 
and values of response function obtained for the initial, 
(2N + 1) – element of the ‘solutions swarm’. 

6.	Saving the best global solution and the best solutions for 
each element of the ‘swarm’.

7.	Ranking the models. Ordering models (solutions) acc. 
to matching with the observation data. The selection 
N + 1 of best solutions (models). From this stage on the 
algorithm operates on N + 1 solutions.

8.	Initialisation of the main optimisation loop.
9.	Modification of solutions in accordance with the formula 

taking into account optimisation via a particle swarm or 
the Levy steps method (with a specified probability).

10.	Determination of the objective function value for each 
‘swarm’ model.

11.	 Updating the best global solution and the best solutions 
for each element of the ‘swarm’.

12.	 Saving in the ‘memory’ the values of optimised parameters 
and values of response function obtained in each iteration 
for the N + 1 element of the ‘solutions swarm’. Saving in 
the ‘memory’ is performed in such a way that the algo-

rithm would always remember � � ��� � ���� � 2�
2 �  

best solutions from all performed simulations.



artykuły

819Nafta-Gaz, nr 10/2016

13.	Starting the procedure of the response surface function 
if the number of ‘memory’ elements is equal to M. De-
termination of the response surface function minimum. 
If the obtained solution is better than the worst solution 
existing in the ‘memory’ then the new solution replaces 
the hitherto worst solution.

14.	Checking the conditions of the optimisation completion.

If the optimisation completion condition has not been 
met – return to point 8.

The presented procedure is performed till achieving the 
condition for computation completion, e.g. reaching a speci-
fied number of performed simulations (objective function 
calls) or achieving the pre-set precision of the measurement 
data reconstruction.

Algorithm Convergence Tests

The developed algorithm was subject 
to convergence tests using the De Jong 
test environment [14]. De Jong tests 
consist in checking the convergence of 
optimisation algorithms based on exam-
ple of defined analytical functions with 
known extrema. The algorithm conver-
gence was verified using the following 
set of test functions.
F1: The first De Jong function.
F2: Generalised Rosenbrock function.
F4: Quadratic function with noise.
F5: Two-dimensional Shekel function 
(so-called fox’s burrows).
F6: Generalised Rastrigin function.
F7: Schwefel function.

Fig. 2 presents F6 – a generalised 
Rastrigin function in a two-dimensional 
case.

The algorithm capability to improve 
the result was taken as the method con-
vergence measure for individual De Jong test functions. To 
unify the way of results presentation, the measure of match-
ing (objective function) was adopted in the following form:

��� =
�������� � ��������
�������� � ��������	 

where:
OFk	 – value of the objective function for the k-th iteration,
minteor	– theoretical minimum of the test function,
min0

opt	 – minimum obtained in the 0-th iteration,
mink

opt	 – minimum obtained in the k-th iteration.
The objective function adopted in such a way makes that 

the convergence graph for each test function takes always the 
value of 1 for the zeroth iteration, where the result of the zeroth 
iteration should be understood as the minimum obtained in 
point 6 of the algorithm. Tests, except for function F5, were 
carried out for N = 10 (solution space dimension) assuming 
maximum 500 calls of the objective function. Because of 
a probabilistic nature of the proposed method the optimisa-

Fig. 2. Two-dimensional Rastrigin function (http://www.sfu.ca/~ssurjano/rastr.html)

tion process for each test function was repeated 100 times 
and the results were averaged. Results are presented in Fig. 3.

The worst results were obtained for function F6 and F7, 
which proves a significant dependence of the algorithm con-
vergence on the number of local minima. For F7, which in the 
tested variability interval has only 4 minima, a more than 4 
times better result was obtained compared to a multi-modal 
Rastrigin function (F6). For the remaining test functions 
good and very good convergences of the tested algorithm 
were obtained. In particular good results were obtained for 
a generalised Rosenbrock function, which as the only used 
test function features a coupling between variables.

It is necessary to draw attention to the fact that for all 
functions the process of the objective function minimisation 
proceeds continuously during all the time of algorithm opera-
tion, which appears in the lack of long horizontal sections in 
the convergence graphs. This proves a good effectiveness of 
the algorithm both at a global searching of the solution space 
and at a local optimisation.

Rastrigin Function 
f (

x 1
, x

2)

x2 x1
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The paper presents theoretical foundations, convergence 
tests, and the scheme of hybrid optimisation method opera-
tion. The proposed method to resolve an inverse calibration 
problem was based on known numerical techniques allow-
ing to search effectively a multi-dimensional solution space. 
The applied techniques include: Latin hypercube sampling, 
particle swarm optimisation, Levy flight method and the re-
sponse surface function. The performed tests of the developed 
algorithm operation and convergence entitle to formulate the 
following comments and conclusions:
•	 Selected numerical techniques creating the presented hy-

brid optimisation method have turned out to be effective. 
Each of them is responsible for another element of the 
algorithm and together they create an effective optimisa-
tion algorithm.

•	 The Latin hypercube sampling guarantees an effective 
initial searching of the solution space at a relatively small 
number of performed simulations. The carried out tests 
have shown that the performance, at the initial stage of the 
solution space recognition, of 2N + 1 simulations (N – the 
number of optimisation variables) ensures a satisfactory 
convergence of the algorithm. What’s more, an increased 
number of simulations at this stage does not significantly 
improve the subsequent algorithm convergence.

•	 The applied particle swarm optimisation was properly 
chosen. This method worked very well as the basic op-
timisation method. It is relatively simple to implement 
and it may be easily combined with other optimisation 
methods creating hybrid algorithms.

•	 The solution space searching using a stable Levy distribu-
tion has substantially improved the effectiveness of the 
presented optimisation method. Fig. 4 presents a comparison 
of the optimisation algorithm convergence in two versions: 

particle swarm optimisation algorithm (PSO), and the hy-
brid algorithm. Making more than 30 iterations the PSO 
algorithm changed the model matching to the observation 
data only twice, correcting the initial match only 1.3 times 
(0.24/0.18). At the same time the hybrid algorithm corrected 
the initial result eight times (0.24/0.03). Differences in the 
convergence for both variants of the method are clearly 
seen in the presented graph. For the PSO algorithm we have 
long horizontal sections proving the algorithm stagnation, 
while the hybrid algorithm convergence features permanent 
improving of the already obtained matching.

Fig. 3. Effectiveness test of the hybrid algorithm. The De Jong test environment

Summary

Fig. 4. Optimisation algorithm convergence – the influence 
of method hybridisation. Convergence tests were performed 

on a synthetic model of a shale formation, for 10 model 
parameters
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•	 The theoretical foundations of response surface func-
tion presented in the paper were applied in the hybrid 
algorithm, which enabled interpolation of the objective 
function based on results of simulation obtained during 
optimisation. However, attention should be drawn to the 
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