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Mathematical models of hydromechanics of multiphase flow  
with varying mass
Matematyczne modele hydromechaniki przepływu wielofazowego o zmiennej masie

Gasim A. Mamedov, Natiq M. Abbasov

Azerbaijan State Oil and Industry University

ABSTRACT: The paper discusses the mathematical model of hydromechanics of multiphase flows with varying mass. A multiphase 
flow is considered a continuum consisting of a set of a large number of different groups of particles. The derivation of motion equations 
and similarity criteria are given taking into account both the externally attached (or detached) mass and phase transitions within the 
medium. The equations of mass, momentum and energy transfer for individual phases and the medium as a whole are derived based 
on fundamental conservation laws. It was demonstrated that in the absence of sources (or flow-offs) of mass, momentum and energy, 
the known equations of single- and multi-phase flow hydromechanics follow as a special case from the obtained systems of motion 
equations and similarity criteria. The obtained motion equations are valid for the description of an ingredient of mixture and the me-
dium as a whole, regardless of their physical and mechanical properties. Thermodynamic and rheological state equations, as well as 
expressions for heat flow, interfacial mass forces phase transitions, and heat exchange between phases can be used to close them. The 
implemented models make it possible to simulate both the stationary distribution of parameters along the wellbore during production 
and non-stationary processes that occur, for example, when the pump shaft speed changes during oil production. The developed ap-
proaches were implemented in the DataFlow software tool for analysis of the hydrodynamics of multiphase hydrocarbon flows, taking 
into account heat exchange with the rocks surrounding the well, and phase transitions in the fluid. Using the software package, test 
calculations were carried out to demonstrate the performance of the proposed and implemented models.
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STRESZCZENIE: W artykule omówiono model matematyczny hydromechaniki przepływów wielofazowych o zmiennej masie. 
Przepływ wielofazowy jest traktowany jako kontinuum składające się ze zbioru dużej liczby różnych grup cząstek. Wprowadzone 
równania ruchu i kryteria podobieństwa są podane z uwzględnieniem zarówno zewnętrznej dołączonej (lub odłączonej) masy, jak 
i przejść fazowych wewnątrz ośrodka. Równania transferu masy, pędu i energii dla poszczególnych faz i ośrodka jako całości otrzymano 
przy użyciu podstawowych praw zachowania. Wykazano, że w przypadku braku źródeł (lub wypływów) masy, pędu i energii, znane 
równania hydromechaniki przepływu jedno- i wielofazowego wynikają jako szczególny przypadek z otrzymanych układów równań 
ruchu i kryteriów podobieństwa. Uzyskane równania ruchu mają zastosowanie do opisu składnika mieszaniny i medium jako całości, 
niezależnie od ich właściwości fizycznych i mechanicznych. Do ich rozwiązania można wykorzystać termodynamiczne i reologiczne 
równania stanu, a także wyrażenia dotyczące przepływu ciepła, siły międzyfazowych masy, przejść fazowych i wymiany ciepła między 
fazami. Wdrożone modele umożliwiają symulację zarówno stacjonarnego rozkładu parametrów wzdłuż odwiertu podczas wydoby-
cia, jak i procesów niestacjonarnych, które zachodzą na przykład podczas zmiany prędkości wału pompy w trakcie wydobycia ropy. 
Opracowane podejścia zostały zaimplementowane w oprogramowaniu DataFlow do analizy hydrodynamiki wielofazowych przepły-
wów węglowodorów, z uwzględnieniem wymiany ciepła ze skałami otaczającymi odwiert oraz przejść fazowych w płynie. Za pomocą 
pakietu oprogramowania przeprowadzono obliczenia testowe w celu wykazania wydajności proponowanych i wdrożonych modeli.

Słowa kluczowe: przepływ wielofazowy, zmienna masa, kontinuum, przejście fazowe, lepka ciecz, napięcie, ciśnienie.

Corresponding author: G.A. Mamedov, e-mail:  qasim11_5858@mail.ru

Article contributed to the Editor: 29.06.2023. Approved for publication: 10.11.2023.

Introduction

The range of problems related to the multiphase flow hy-
dromechanics is extensive and has been developing intensively 

in recent years. This is due to important practical applications 
in various scientific and technical fields, such as energy, petro-
chemistry, drilling, mechanical engineering, chemical technol-
ogy, agricultural engineering, etc. Studies of multiphase flow 
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hydromechanics are progressing in several directions, each 
having its own specifications and peculiarities, both in terms 
of theoretical description and experimental study (Deich and 
Filippov 1981; Timofeeva, 2014).

An analysis of known papers has shown that currently, the 
basic equations of multiphase flow are established in the ab-
sence of external sources (flow-offs) of mass, momentum, and 
energy (i.e., with the constancy of mass) of the mixture flow.

However, in many important practical works, the total 
mass of the mixture flow undergoes significant changes (mass 
variability is understood here otherwise than in the theory of 
relativity and is a consequence of the changes in the compo-
sition of particles forming the mixture) due to the addition 
(or detachment) of a new mass (through permeable flow loops). 
Such flows are common in the following areas: oil, gas and 
water distribution (or gathering) systems (pipes or channels); 
injection or suction in boundary layer control; injector and 
separation systems of dissipating and drainpipes; diverging 
and converging ducts; manifold heat exchangers; continuous 
flow setting tanks and tanks with hydromechanical (water jet) 
cleaning, etc. What these problems have in common is that 
the flow movement in their flow part involves a change in 
mass (i.e., with the addition or detachment of mass along the 
path). These considerations are essential for a comprehensive 
approach to the problems of multiphase flow hydromechanics. 
The movement of a multiphase (two-phase, inhomogeneous) 
mixture in the vast majority of natural and technical systems 
is turbulent, making its study a crucial practical task.

When mathematically describing the motion of a mul-
tiphase turbulent flow, stylized laws of mechanics are used. 
The methods of operational analysis proposed by different 
researchers, at various times, for the mathematical description of 
the movement of a multiphase (two-phase) flow have different  
degrees of approximation and specific limited areas of 
application.

One of the main challenges in formulating differential 
equations for the motion of a turbulent multiphase (two-phase, 
suspension-carrying) flow is the presence of surfaces of weak 
and strong discontinuities in a turbulent flow of a mixture, 
where characteristics of the flow change chaotically and disor-
derly in in time and at each point in space, both in magnitude 
and in direction. Therefore, the actual values of velocity and 
pressure of a multiphase flow, strictly speaking, cannot be 
considered continuous functions of space and time coordinates 
throughout the entire space occupied by the mixture. 

Continuous functions of space and time coordinates in 
a turbulent multiphase or two-phase flow are considered to 
be the averaged values of velocities and pressures, for both 
the liquid and suspended (solid) phases, to which the laws 
of continuum mechanics are already applicable (the concept 

of continuity has certain limitations and requires compli-
ance with a group of conditions even for single-phase flow)  
(Karaushev, 2016).

As is known, mixing (diffusion) is one of the main proper-
ties of turbulence. Reasoning in general terms, we can say that 
a mass of liquid moving at an average speed diffuses (fluc-
tuates) with a pulsating speed. If we temporarily ignore the 
multiphase (two-phase) flow and consider the flow without the 
presence of suspended particles, it is easy to notice significant  
differences between molecular and turbulent diffusion. In 
the case of molecular diffusion, the medium consists of dis-
crete particles, whereas in turbulent diffusion, the medium is 
quasi-continuous.

An analogy can be drawn between molecular and turbulent 
diffusion in a multiphase (two-phase, suspended) flow, where 
the medium is discrete with respect to the suspended (carry-
ing) phase. However, in a single-phase flow, when considering 
issues of turbulent diffusion, the discreteness of the medium is 
assumed in relation to individual particles of liquid volumes (for 
example, in relation to vortices), as if they were composed of 
molecules of a different kind, which retain their original prop-
erties throughout the entire period of the movement process. 
This implies that the spatial distribution of particles changes 
(Anderson et al., 2012). 

In a mixture of multiphase (two-phase, suspension-carrying) 
flows, discreteness takes on a more pronounced form than in 
a single-phase flow. This is due to the presence of practically 
non-deformable solid particles of another material in such 
flows of a deformable medium (in the presence of an aerated 
flow, in a less deformable medium there are more deformable 
particles), which leaves its mark on the continuity of the mixture 
as a whole (Harrer et al., 2021).

In the mathematical sense, averaging allows us to transi-
tion from fields of vector and scalar quantities that change 
abruptly in time and space to fields of the same quantities that 
change smoothly in time and space. This transition enables us 
to consider the discrete field of kinematic and dynamic char-
acteristics of movement as quite close to a continuous field of 
the same characteristics.

The authors pay special attention to the issue of averaging 
hydrodynamic quantities characterizing the flow of multiphase 
media. This is driven by two factors: the peculiar structure of 
the medium and the turbulent nature of its flow, which ne-
cessitated the shift from original structures and quantities to 
smoother and more regular characteristics that can be studied 
using conventional methods of mathematical analysis (Ghajar 
and Bhagwat, 2013).

When determining the average value of the kinematic and 
dynamic characteristics of two-phase systems, time or spatial 
averaging over any period of time or region of space is most 
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commonly used. For this purpose, the author also employed 
a more general method of spatiotemporal averaging in the 
following form.

Problem statement

Let us consider a multiphase flow with varying mass as a 
collection of a large number of different groups of particles 
(molecules, drops, bubbles, solid inclusions, etc.) in continuous 
chaotic motion. For the purposes of mathematical formulation 
of such flow, we will employ an averaged motion description 
introducing the notion of multispeed continuum and interpen-
etrating motion of its components. A multi-speed continuum 
consists of a set of individual substances, each belonging to 
its corresponding component (a phase or component) of the 
mixture, and occupying a fixed volume within the system. 
The average density, velocity, temperature and other kin-
ematic and dynamic parameters related to its continuum and  
its mixture component defined as the functions of the four-
dimensional space can be determined for each of these com-
ponents of continuums within the mixture at each point of 
the volume.

It is therefore assumed that the elementary mass with ve-
locity u*j becomes attached to (or detached from) a mixture 
particle with the velocity vector ui. Here, the velocity vector 
u*i may differ by a certain value from the velocity vector of 
the main mass of the i phase of ui (i.e. ui ≠ u*i). Since the at-
tached elementary mass may be attached to a fixed particle  
from different directions, q* – flow of mass, u*i q*i – flow of 
momentum and ( / )e u qi i i∗ ∗ ∗+ 2 2  – flow of energy attached to 
a particle per unit of time and per unit of volume should be 
considered.

Under these conditions, the laws of conservation (mass, mo-
mentum and energy) are written as balance equations that relate 
the rate of change of the “total quantity” of the corresponding 
physical value (phase or medium) within a specific volume to 
the “flow” of this value through the surface that restricts the 
volume, and the "sources" acting within the volume.

Basic motion equations

Let us select an arbitrary volume V limited by a surface S 
of a multiphase mixture which is moving with the continuous 
change of mass (i.e. external heat and mass transfer) for the 
purposes of mathematical formulation of the laws of conser-
vation at a given point of time t. Subsequently, the following 
integral equations of mass, momentum and energy balance can 
be written for the i phase of a multiphase medium:

Mass balance equation:
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Momentum balance equation:
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Total energy balance equation:

 	

∂
∂

+ =

= − + − +

∫
∗

t
e u dV

e u u u q

i i i i
V

i i i i in i i in i in

( )

( / )

2

2 2

ρ φ

ρ φ φ σ φ   +

+ + + +

+ − + +

∫

∫ ∗ ∗ ∗

S

i i i i i i i
V

i
i i i i

dS

F u e u q

R u Q e

ρ φ

χ

( / )

( ) (

2 2

1




++( ) 
u dVχ χ2 2/ )

	 (3)

In these equations: ρi, ϕi, ui are true density, volume concen-
tration and velocity of the i phase; u*i – velocity of attached (or 
detached) mass; q*i – specific attached (or detached, with q*i < 0)  
mass; χ – specific mass of phase transition; Fi, σi – specific vec-
tor of mass and stress tensor of superficial forces; uχ – velocity 
of interphase transition mass; 



Ri  – specific vector of interphase 
forces; ri  – radius vector; n – outward normal; ei – specific 
internal energy of the i-phase; e*i, eχ – specific internal energy 
of attached (or detached) mass and phase transformations 
respectively; Qi – intensity of heat exchange between phases; 
qi

* – vector of specific heat flow to the i phase of the mixture.
In the area of continuous motions, the integral equations of 

mass, momentum and energy balance written for i (carrier or 
carried) phase (1)–(3), are equivalent to differential equations. 
If in the first part (1)–(3), integrals taken through a surface S 
are translated to the integrals taken through a volume V ac-
cording to the Gauss-Ostrogradsky formula, after the relevant 
transformations we obtain the following differential equations 
of mass, momentum and energy transfer for the i phase.
1.	 Mass transfer equation (equation of continuity):
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2.	 Momentum transfer equation:
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3.	 Total energy transfer equation:
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Adding (1)–(3) or (4)–(6) for the flow in whole we get the 
following differential equations:
•	 equation of through flow:

	 d
dt

div u qρ ρ+ =   * 	 (7)

•	 equation of dynamics:
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•	 equation of total energy:
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For slow processes (i.e., at medium motion speeds that 
are significantly lower than sonic velocity), the internal (heat) 
energy equation obtained from the comparison (8) and (9) 
can be used. For this purpose, we scalarly multiply both parts 
(8) by the medium velocity vector   and subtract the obtained 
result from (9), then:

	 ρ
de
dt

divq e e q= − − −
*

* *( ) 	 (10)

Thus, the system of basic equations of flow motion with 
heat and mass transfer (i.e., with the influence of external 
sources of mass, momentum and energy) is represented in the 
following form:

	 d
dt

div u qρ ρ+ =  * 	 (11)
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	 ρ
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In the absence of external sources of mass (q* = 0), mo-
mentum ( )* *

 u u q− =[ ]0 , and energy ( ) ,* *e e q− =[ ]0  the known 
equations of fluid and gas dynamics can be obtained from this 
system (Duich and Zaryankin, 1984; Anderson et al., 2012):

	 d
dt

divu d u
dt

F de
dt

qρ ρ ρ ρ σ ρ+ = = +∇ = −∇ ∗0; ; 	(14)

The obtained equations are valid for describing the mo-
tion of a component of the mixture and flow as a whole with 
any physical properties. However, this system is not truly 
defined. It is necessary to incorporate thermodynamic and 
rheological state equations, as well as heat flow equations, into 
it. These additional relations are established when constructing 
a mathematical model of the specific environment under study. 

As an example, consider the flow of a viscous incompress-
ible medium. These additional relations are established when 
building a mathematical model of the specific medium under 
study. As an example, let us consider the flow of a viscous 
incompressible medium. The condition of incompressibility 
of the medium applies in cases where the flow velocity of the 
fluid (gas) is significantly lower than the noise velocity. Apart 
from substances such as liquid (oil, oil products, water, etc.), 
which are practically incompressible media, this condition is 
partially fulfilled for gas (air) flows when the Mach number 
in them is Ma ≤ 0.3. In such cases, the following additional 
relations should be written:
a)	 	for stress tensor of superficial forces:
	 σ σ τij ij ijp= − + 	 (15)

where: p – pressure; σij – Kronecker symbol; τij – viscous 
tension tensor (in incompressible Newtonian media); 
τij = μεij ; εij – strain velocity tensor, εij = ∂ui / ∂xj + ∂uj / ∂xi ; 
μ – coefficient of dynamic viscosity;

b)	 	for heat flows (according to the Fourier's law):
	 q T∗ = − ∇λ 	 (16)

where: λ – heat-conduction coefficient.
c)	 	for internal energy:
	 e cT e cT= =∗ ∗, 	 (17)

where: T, T* – temperatures of the main and attached (or 
detached) mass of the medium; c – specific heat capabil-
ity (in incompressible media c = cp = cV).

By adding expressions (15)–(17) to the system (11)–(13), 
we obtain hydrothermodynamic equations for a viscous in-
compressible medium with heat and mass transfer:
	 ∇ =u q 	 (18)
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The known Navier-Stokes motion equations arise as a spe-
cial case from (18)–(20) if there is no influence of external 
sources (or flow-offs) of mass q = 0, momentum ( )u u q∗ − = 0  
and energy (T* – T ) q = 0 (Duich and Zaryankin, 1984):

	 ∇ =
∂
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+ ⋅∇ = − ∇ + ∇−u u
t

u u F P u0 1 2, ( ) ρ ν 	 (21)

and the heat transfer equation in a viscous incompressible 
medium:

	
∂
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T
t

u T a T( ) 2 	 (22)

Therefore, the established equations (18)–(21) are more 
universal and applicable to a wide range of thermophysical 
and hydrodynamic problems.
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Analysis of these systems of equations shows that they 
form a closed system of five equations to find u u u ux y z( , , ) , 
P and T (values q, v, ρ, c, a, T*, u*, F in this system are pre-
determined). When solving specific problems, the conditions 
of unambiguity (boundary conditions) including geometric, 
physical, time (initial) and boundary conditions should be 
added to the system (18)–(20).

Thus, the system of differential equations (18)–(20) along 
with the conditions of unambiguity represents a mathematical 
statement of boundary value problems for macromedia with 
heat and mass transfer.

The problem is solved by analytical, numerical or experi-
mental methods. In the latter case, widely used methods of 
physical and mathematical modelling can be used.

It is obvious that the exact analytical solution of the bound-
ary value problem (described by the system of differential 
equations of motion of the macro medium with heat and mass 
transfer) is difficult in general terms. Under these conditions, 
it is necessary to use numerical methods.

Similarity criteria

The analytical solution of the boundary value problem of 
hydromechanical processes with varying mass is extremely 
challenging to tackle mathematically. Due to the introduction 
of additional terms (which take into account the mechanical and 
thermal interactions that significantly complicate the boundary 
conditions) into the motion equations, a purely analytical study 
of these processes is now possible only with an approximate 
problem statement. This allows for a certain simplification 
of the original equations by either neglecting terms that are 
not essential for this problem or by replacing complex exact 
relations between approximate values. This substitution in 
the study of complex systems is known as a similarity theory. 
It is a crucial tool for modelling hydrodynamic processes in 
heat-conducting flow given their complex nature.

Below, we discuss the conditions for achieving similarity 
in hydrodynamic processes in macroscale with external heat 
and mass exchange. The influence of individual terms in mo-
tion equations is evaluated either through experimental veri-
fication or numerical methods. Generalization and extension 
of these data to similar phenomena are more straightforward 
when transitioning from ordinary physical values to complex 
values composed in a specific way depending on the nature 
of the process. In this case, the number of variables decreases 
and the interrelationships characterizing the phenomenon as a 
whole become more pronounced. This replacement of ordinary 
variables with generalized ones in the study of complex systems 
is called similarity theory. One of the key challenges in this 

theory is establishing rules for making generalizations and 
extending the results of experiments conducted under certain 
conditions to other conditions, as well as determining the limits 
of the applicability of these generalizations. It is evident that 
similarity theory is a crucial tool for analysing hydrodynamic 
processes in heat-conductive media given their complex nature 
(Sedov, 1977; Anderson et al., 2012).

To ensure the similarity of the simulated flows, some di-
mensionless groups, known as similarity numbers, must be 
equal. These numbers can be determined in two ways: either 
derived from the equations of motion of the process or iden-
tified through dimensional analysis. Moreover, the tools of 
the first method are somewhat simpler compared to those of 
dimensional analysis (Cou, 1971; Kryukov, 2003).

Let us proceed to the consideration of the similarity con-
ditions of two flows of viscous incompressible media with 
variable mass. The conditions for achieving hydrodynamic 
and thermal similarity in these are obtained by writing the 
non-dimensional motion equations and equating the numeri-
cal coefficients in both systems. To derive the correspond-
ing similarity criteria, we present a system of motion equa-
tions (continuity, dynamics and energy) with varying mass  
(18)–(20) in the following form (here and elsewhere, the dy-
namic equations are carried out only in the projection onto 
X axis):
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where: ρ – density; u, υ, w – projections of medium velocity 
vector onto axes of reference x, y, z; P – pressure;  
μ – dynamic (shearing) viscosity; T – medium tempe-
rature; C – heat capacity; λ – heat-conduction coeffi-
cient; T*, q* – temperature and specific attached  
(or detached, with q* < 0) mass of medium.

Let us reduce the equations (23) to a dimensionless form 
by using scales for time, length (particularly, coordinates), 
velocities, pressures, mass forces, etc.

For this purpose, let us denote the dimensionless values 
with the same letters as the dimensional values but with a dash, 
and make the following substitution:
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Substituting these values t, x,..., P,... in the equations system 
(23), we get:
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then, by reducing both parts of these equations to a suitably 
chosen combination of scales and physical constants, let us 
minimize the number of complexes within the equations. Let 
us divide both parts of the continuity equation by (ρV0) / l0, the 
dynamic equation by ( ) / ,ρV l0

2
0  and the energy equation by 

(ρCV0T0) / l0 and omit the dashes over the dimensionless values 
for simplicity, resulting in (26).

From this system, it can be concluded that if two media 
flows are similar, since they are described by identical equations 
(as well as with the similar boundary conditions):
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presented in a dimensionless form, then the following dimen-
sionless parameters must be identical for them:
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where: a = λ /ρC – temperature conductivity coefficient.

Thus, for such physical phenomena (hydrodynamic, ther-
mal), the basic system of motion equations, written in dimen-
sionless form (26), must be the same. For such phenomena, 
the numbers Sh, Fr, Eu, Re, Pe, k*, θ*, J* defined by established 
parameters should be similar (the condition of identity of simi-
larity numbers is denoted by a symbol (idem) which replaces 
the phrase “the same value”) because these numbers are also 
known as similarity criteria, i.e.

Sh = idem;   Fr = idem;   Eu = const;   Re = idem;
Pe = idem;   J* = idem; k* = idem;    θ* = idem.

The physical meaning of similarity numbers Sh, Fr, Eu, Re, 
Pe, k*, θ*, J* can be established after considering the physical 
content of each term in the motion equation.

An analysis of the equations of motion of the medium 
with heat and mass transfer that the Strouhal number Sh ex-
presses the ratio of the local inertial force to the convective 
one; the Froude number Fr characterizes the ratio of inertia 
to gravity; the Euler number Eu characterizes the ratio of the 
force of pressure to the force of inertia; the Reynolds number 
Re expresses the ratio of the force of inertia to the force of 
viscosity; the Peclet number Pe characterizes the convection 
and heat-conducting heat transfer in flowing media; the new 
numbers J*, k*, θ* characterize a measure of the ratio between 
the mass flow rate, velocity and temperature of the added (at-
tached or detached) and main medium flows. These numbers 
characterize the ratio of the values of different physical nature 
and serve as similarity criteria.

Usually, in cases where any physical value included in the 
similarity criterion cannot be determined experimentally or 
calculated, it is excluded by rearranging two or more similar-
ity criteria while obtaining the so-called derived similarity 
criteria. They can be obtained by combining the basic numbers 
of thermal and hydrodynamic similarity. For example, deter-
mining the flow rate with free movement (natural convection) 
is particularly challenging due to variations in the density of 
the medium caused by temperature differences at its various 
points. This can be addressed by combining the Reynolds Re 
and Froude Fe numbers. The Galileum number Ga = Re2/Fr, 
which reflects the influence of the gravity field represented 
by free-fall acceleration on processes occurring in a medium 
of this viscosity, can be derived from the ratio of Re and Fr.

The nomenclature and number of similarity criteria are 
selected depending on the problem at hand. It is possible that 
self-similar areas may emerge in which the identification of 
a particular criterion becomes degenerate. In a number of 
practical problems, approximate similarity can be considered 
when the number of characteristic criteria is reduced to the 
minimum, which can be implemented in a model or numeri-
cal experiment.
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Conclusion

Non-Newtonian viscous fluids are commonly encountered 
in nature and find extensive applications in various fields of 
technology, especially in the oil, gas and chemical industries.

The primary characteristic of non-Newtonian viscous fluids 
is their flow curves (rheological curves or rheograms), depict-
ing graphs of the relationship between the velocity gradient 
(or shear rate) and the resulting shear stresses within the fluid.

Flow curves are constructed on the basis of experimental 
data obtained through viscometric research.

As is known, Newtonian fluids exhibit linear flow curves. 
The viscosity of such fluids is determined by the slope of the 
corresponding direct rheogram to the horizontal axis and is 
the only constant characterizing the rheological properties of 
a viscous fluid at a given temperature and pressure, regardless 
of the velocity gradient.

The flow curves of non-Newtonian fluids are very diverse 
and, in general, are not linear.

These fluids include power-law, viscoplastic and other 
non-Newtonian fluids.

The necessary equations for the hydromechanics of mul-
tiphase media with varying mass and the similarity criteria for 
hydrodynamic processes modelling are derived from the laws 
of conservation of mass, momentum and energy.
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