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Mathematical modeling of an elastoplastic problem  
for a fractured massif, underground workings
Modelowanie matematyczne zagadnienia sprężysto-plastycznego  
dla spękanego masywu w wyrobiskach podziemnych

Rafail K. Mehtiyev

Azerbaijan State Oil and Industry University

ABSTRACT: This article considers the problem of plane elastoplasticity of stress distribution in a rock mass weakened by a circular 
excavation. The components of stress, strain, and displacement in the elastic and inelastic field, as well as the dimensions and shape of 
the contour separating them, have been determined. The convergence of results between the analytical and numerical solutions of the 
problem is evaluated. The complexity of elastoplastic problems lies in the fact that the shape and dimensions of the plastic zone are 
not known in advance and must be determined. The main advances in solving plane elastoplastic problems for isotropic bodies with 
circular holes are related to the complete coverage of the hole by the plastic deformation zone. Currently, the corresponding mathemati-
cal problem for an ideally plastic body is often reduced to a boundary problem for a biharmonic equation in an unknown boundary 
region, which must be identified during the process of solving the elastoplastic problem. In the directions of the X and Y axes, external, 
uniformly distributed loads are applied at infinity. These loads can either be unequal λ ≠ 1 or equal λ = 1 (where λ is the lateral thrust 
coefficient). The magnitude of these loads is such that a plastic deformation zone forms around the excavation, completely covering 
its contour. Deformation and failure of the rock mass occurs under specified strain conditions in the elastically compressed part of the 
massif. In both elastic and plastic regions, the hypothesis of medium continuity is preserved. Since movement of the rock mass along 
the longitudinal axis of the excavation is restricted, the case of plane deformation is considered. The solution of the problem requires 
determining the components of stress, strain, and displacements in the elastic and inelastic regions, as well as the size and shape of the 
contour L separating these regions. The most difficult case of the problem formulated above is the case when the external forces are 
unequal, that is, the lateral thrust coefficient λ is not equal to unity. In this case, the boundary between the plastic and elastic regions 
(contour L) takes the shape of an ellipse. The final expressions of this solution are highly complex, complicating their analysis and 
practical application. It is assumed that the stress level is such that the excavation is entirely covered by the plastic zone, and that there 
is a crack in the elastic zone of the massif. Perturbation methods and analytic function theory are employed to solve the problem.

Key words: stress-strain state, elastoplastic problem, zone of inelastic deformations, fractured rock mass, stress intensity factors.

STRESZCZENIE: Celem niniejszego artykułu jest analiza sprężysto-plastycznego rozkładu naprężeń w górotworze osłabionym wyro-
biskiem o przekroju kołowym. Określono składowe naprężenia, odkształcenia i przemieszczenia w polu sprężystym i niesprężystym, 
a także wymiary i kształt oddzielającego je konturu. Dokonano oceny zbieżności wyników między analitycznymi i numerycznymi 
rozwiązaniami tego problemu. Złożoność problemu sprężysto-plastycznego wynika z faktu, że kształt i wymiary strefy plastycznej nie 
są z góry znane i muszą być zdefiniowane. Największy postęp w rozwiązywaniu problemów sprężysto-plastycznych dla ciał izotropo-
wych z okrągłymi wyrobiskami (otworami) związany jest z uzyskaniem pełnego pokrycia otworu przez strefę odkształcenia plastycz-
nego. Obecnie analogiczny problem matematyczny w przypadku idealnie plastycznego ciała jest często redukowany do zagadnienia 
brzegowego dla równania biharmonicznego w nieznanym obszarze brzegowym, który musi być zidentyfikowany podczas procesu 
rozwiązywania zagadnienia sprężysto-plastycznego. W kierunkach osi X i Y działają zewnętrzne, równomiernie rozłożone obciążenia 
na dużych odległościach. Obciążenia te mogą być nierównomierne λ ≠ 1 lub równomierne λ = 1 (gdzie λ jest współczynnikiem napo-
ru bocznego). Wielkość tych obciążeń jest na tyle duża, że wokół wyrobiska tworzy się strefa odkształceń plastycznych, całkowicie 
pokrywająca jego kontur L. Do odkształcenia i zniszczenia górotworu dochodzi w określonych warunkach odkształcenia w sprężysto 
ściskanej części masywu. Zarówno w strefie sprężystej, jak i plastycznej, zachowana jest hipoteza o ciągłości ośrodka. Ponieważ ruch 
górotworu wzdłuż osi podłużnej wyrobiska jest ograniczony, rozpatrywany jest przypadek deformacji płaskiej. Rozwiązanie problemu 
wymaga określenia składowych naprężeń, odkształceń i przemieszczeń w obszarze sprężystym i niesprężystym, a także wielkości 
i kształtu konturu L oddzielającego te obszary. Najtrudniejszym przypadkiem sformułowanego powyżej problemu jest przypadek, 
gdy siły zewnętrzne są nierówne, tzn. współczynnik parcia bocznego λ nie jest równy jedności. W takim przypadku granica pomiędzy 
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obszarem plastycznym i sprężystym (kontur L) przyjmuje kształt elipsy. Ostateczne wyrażenia tego rozwiązania są bardzo złożone, co 
komplikuje ich analizę i praktyczne zastosowanie. Zakłada się, że poziom naprężeń jest taki, że wyrobisko jest całkowicie pokryte strefą 
plastyczną oraz że w strefie sprężystej masywu występuje pęknięcie. Do rozwiązania problemu zastosowano metody perturbacyjne 
i teorię funkcji analitycznych.

Słowa kluczowe: stan naprężenie-odkształcenie, zagadnienie sprężysto-plastyczne, strefa odkształceń niesprężystych, spękany górotwór, 
współczynniki intensywności naprężeń.

Introduction

At sufficiently high values of external loads, areas of plastic 
deformation appear near excavations, pits, recesses, and other 
similar structural or technological connections. The considera-
tion of plastic zones is particularly important for calculating 
the strength of structures and constructions. Sokolovsky (1969) 
obtained the solution to the elastoplastic problem for a plane 
with a hole under conditions of plasticity. It was shown that the 
contour of the interface between elastic and plastic deformations 
is very close to an ellipse. The stress function, which describes 
the stress in the plastic zone, is not biharmonic. Sokolovsky 
(1969) also provided an approximate solution to the elastoplas-
tic problem for a massif weakened by two identical circular 
excavations under conditions of plasticity. It was assumed that 
the value of the stress in the massif and the distance between 
the workings were such that the circular developments were 
completely covered by the corresponding plastic zones and 
that those plastic zones did not intersect. The article provides 
a solution to the planar elastoplastic problem of stress distribu-
tion in rock mass weakened by circular excavation under the 
influence of tectonic and gravity forces. Practical experience 
with mine workings shows that crack initiation and destruction 
occur in the rock massif. Therefore, during the design stage 
of mine workings, it is necessary to take into account the pos-
sibility of crack formation and conduct a limit analysis of the 
fractured rock mass weakened by the crack.

In this context, solving the elastoplastic problem for a rock 
mass with a circular excavation, while considering the pres-
ence of cracks in the elastic zone during loading, is of great 
importance. To date, no such studies have been reported.

Problem statement

Let us consider the stress-strain state of a homogeneous, iso-
tropic elastic rock mass near a circular, long, single horizontal 
excavation located at a depth H below the ground surface and 
not affected by mining operations. The radius of the excavation 
is R0, and a uniformly distributed load of intensity P0 is applied 
to its contour, equal to the resistance of the support. We as-
sume that the rock medium, which has a compressive strength 
Rc, is weightless within the zone of influence of the excava-

tion (Figure 1). The greater the depth of the excavation, the 
smaller the error resulting from this idealization. As Yerzhanov 
(1959) and Mikhlin (1934) showed, this error does not  
exceed 1%.

Mirsalimov (1987), based on Yerzhanov’s work, concluded 
that within the upper layer of the lithosphere, where mining 
works are carried out, it is possible to consider carrying out 
a wide range of mining works in horizontally formed sedi-
mentary rocks, taking into account the geological conditions. 
The stresses in the entire rock mass are distributed hydrostati-
cally, that is, λ = 1. In this case, the solution of the problem is 
significantly simplified, because the contour of the ellipse L 
turns into a circle. The calculation scheme used to solve the 
problem is shown in Figure 1.

The most difficult situation of the formulated problem 
occurs when the external forces applied along the horizontal 
and vertical axes are unequal, that is, when the lateral thrust 
coefficient λ is not equal to one (λ ≠ 1). The calculation scheme 
shown in Figure 1 is quite general, because when there are 
tangential stresses at infinity (for example, due to non-tectonic 
factors), it is always possible to choose the coordinate axes in 
the direction of the main stresses. As a result, the distribution 
of stresses at infinity will correspond to that assumed in the 
problem ( , , )σ σ σ σ τx x y y xy= = =∞ ∞ 0 .

Figure 1. Calculation scheme of an elastoplastic problem for 
a fractured rock mass weakened by a circular excavation 
Rysunek 1. Schemat obliczeniowy dla zagadnienia sprężysto-
-plastycznego dla spękanego górotworu osłabionego kolistym 
wykopem
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When the mass is loaded around the circular excavation, 
stress concentration occurs. At sufficiently large values of 
external loads, σ σx y P

∞ ∞, , 0, a plastic zone is formed. It is as-
sumed that the plastic zone completely surrounds the circular 
working area, and there is a rectilinear crack outside the plastic 
zone, that is, in the elastic zone (Figure 1). 

In this case, it is assumed that there are no tangential stresses 
in the plastic region (τrθ = 0), and, as a result, the stress state 
is axisymmetric (Savash et al., 2019). Let us denote the stress 
components in the plastic region with the index 1 placed on 
top, and the stresses in the elastic region without the index. We 
assume that the weighty elastic half-space y < H is weakened 
by one tunnel, which is a cylinder with an axis parallel to the 
surface of the half-space.

Then the boundary conditions are defined as follows:
on the development contour

	 τ σθr R R r R R
p1 1
0

0 0
0

= =
= =, 	 (1)

at infinity
	 σ λγ σ γ τx y xyH H∞ ∞ ∞= = =, , 0 	 (2)
where:
σ σx y

∞ ∞,  – horizontal and vertical normal stresses, respec-
tively; τ xy

∞  – tangential stresses; λ = μ /(1 – μ) – coeffi-
cient of lateral thrust of the rock; μ – Poisson’s ratio  
of the rock; γ – average density of the rock mass;  
(H – γ) – depth of the considered point of the massif 
from the earth’s surface.

At an arbitrary point in the rock mass with coordinates 
X, Y, the stress components satisfy the equilibrium equations

	
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

=
σ τ σ τx xy y xy

x y y x
0 0, 	 (3)

and the condition of compatibility of deformations:

	 ∂
∂

+
∂
∂









× + =

2

2

2

2 0
x y x y( )σ σ 	 (4)

In the region of plastic deformations, in addition, the physi-
cal equation takes the following form:

	 σ σθ + = −





r k A

r
B2 2 	 (5)

Here and below, all quantities that have the dimension of 
length and displacement are related to the excavation radius R0.

A strength reduction function f (r) is introduced into the 
strength condition, which determines the law by which the 
strength of rocks for uniaxial compression or adhesion in the 
surrounding mine working changes depending on the relative 
radius r (r = R /R0,where R0 is the working radius and R is the 
current radius).

The principle for choosing an analytical expression for 
the strength reduction function is essentially the same. For 
example, in the “σ – r” coordinate system, experimental data 
are approximated by a monotonic curve, the ordinates of which 
increase from some value close to or equal to zero at the exca-
vation contour to the strength of the untouched massif Rc at the 
interface between the plastic and elastic regions (Mehtiyev and 
Tanriverdiyev, 2023). To some degree, the known analytical 
expressions for the strength reduction function correspond to 
this principle. However, it is quite obvious that if, when con-
structing the initial physical model, the rock medium is assumed 
to be continuous, the form of the function f (r) must correspond 
to this initial condition. In particular, in both the plastic and 
elastic regions, the stress function F (r) must be biharmonic, 
and therefore it will have a single specific expression.

To find out the type of strength reduction function, we pro-
ceed as follows. Let us write the initial relations in the polar 
coordinate system. The equations of equilibrium and compat-
ibility of deformations take the following forms (Timoshenko 
and Goodyear, 1975):

	 ∂
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σ τ

θ
σ σθ θr r r

r r r
1 0 	 (6)
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where r, θ are polar coordinates.

We present the robustness condition in a fairly general 
form as follows:

	 ( ) ( )σ σ τθ θ− + =r r k f r2 2 2 24 4 	 (9)

where k is a constant depending on the initial physical prere-
quisites included in the strength condition.

Let us introduce the stress function in such a way that the 
following relations are satisfied in the plastic region:

	 σ σ τθ θr rr
dF
dr

d F
dr

= = =
1 0

2

2, , 	 (10)

It is obvious that in this form, the stress function always 
satisfies the equilibrium equations.

To determine the analytical expression for the strength 
reduction function, we substitute expressions (10) into (8) and 
(9). We get a system of equations:

	 1 2
2

2r
dF
dr

d F
dr

kf r− = ± ( ) 	 (11)

	 ∇∇ =F 0 	 (12)
where ∇  – Laplace operator.
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Solving equation (11) by the constant variation method, 
we obtain the following expression for the stress function:

	 F r kr f r r dr k rf r dr C r C( ) ( ) ( )= ⋅ − + +− ∫∫2 1
1
2

2 	 (13)

where C1 and C2 are arbitrary integration constants.

To determine the components of the stress field in the plastic 
region, we introduce the stress function F (r), which is related 
to them by dependencies (10) and is determined in accordance 
with expression (11):
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Using the second boundary condition on the excavation 
contour (1), we find the values of the integration constants:

	 C P
k

A C1
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22 4
0= + =, 	 (15)

Then, taking into account (15), expression (14) will take 
the form:
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Using expression (16) and formula (15), we determine the 
stress components in the plastic region:
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At the boundary L between the plastic and elastic regions, 
the stresses are continuous:

	 σ σ σ σ τ τx x y y xy xy
1 1 1= = =, , 	 (18)

The edges of a straight crack are considered free from ex-
ternal loads. At the center of the straight crack, we place the 
origin of the local coordinate system x1Oy1, with the x1 axis 
coinciding with the crack line, and making an angle α1 with 
the x axis (Figure 1).

To find the stressed state in the elastic zone of the massif, 
we use the following boundary conditions:

σ σ σ σθ θr r r ri i− = −1 1  along L,
σ τy x y1 1 1

0 0= =,  at the edges of the crack.
To determine the unknown boundary L between the elastic 

and plastic regions, we use the following condition:
	 σ σθ θ= 1 	 (19)

The additional condition (19) allows us to find the required 
contour function.

Solution method

The problem posed concerns the unknown boundary L 
separating the elastic and plastic zones. We will search for the 
unknown boundary L as follows
	 r a H= = +ρ θ ε θ( ) ( )0 	
in which the function ρ(θ) is to be determined. Here ε = R0/a0 
is a small parameter, and R0 is greatest height of profile rough-
ness L from circle r = a0.

We assume that any A1 function can be expressed by a trigo-
nometric Fourier series (Mirsalimov and Hasanov, 2022).

	 H a k b kk k
k

( ) ( cos sin )θ θ θ= +
=

∞

∑
1

	

We search for the functions (stresses, displacements, stress 
intensity coefficients) in the form of the separation of the small 
parameter ε:

	
σ σ εσ τ τ ετ

σ σ εσ
θ θ θ

θ θ θ

r r r r r r= + + = + +

= +

( ) ( ) ( ) ( )

( ) ( )

...; ...;0 1 0 1

0 1 ++

= + + = + +

...;

...; ...( ) ( ) ( ) ( )u u u0 1 0 1ε υ υ ευ

	 (20)

in which we neglect, for simplicity, terms containing ε to 
a power higher than the first.

Each approximation satisfies the system σ σ τθ θr
j j

r
j ju( ) ( ) ( ) ( ), , ,  

v jj( ) ( , , ,...)= 0 1 2  of differential equations of the plane problem 
in elasticity theory. Next, we use the perturbation method. We 
obtain the values of the stress tensor components at r = ρ (θ) 
by expanding into a series the expressions for the stresses in 
the vicinity of r = a0.

Using the well-known formulas (Muskhelishvili, 1977) 
for stress components σn and τnt (n, t are natural coordinates), 
we obtain the boundary conditions of the problem on contour 
r = a0 in the form:
for zero approximation

	 σ σ τ τθ θr r r r r a( ) ( ); ,0 1 0 1
0= = =at 	 (21)

	 σ τy x y1 1 1

0 00 0( ) ( ),= = , at the edges of the crack

for the first approximation

	 σ τ θr rN T r a( ) ( ), ,1 1
0= = =at 	 (22)

	 σ τy x y1 1 1

1 10 0( ) ( ),= = , at the edges of the crack

here:
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The Kolosov-Muskhelishvili relations for the elastic zone 
are as follows (Muskhelishvili, 1966):

	 σ σ σ σθx y r z z+ = + = + 2 Φ Φ( ) ( ) 	 (24)
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In zero approximation, we write the boundary conditions 
of the problem (21) in the following form:
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where:
Φ0(z) and Ψ0(z) – complex potentials in zero approximation,
t1 – affix of crack edge points in zero approximation.

In zero approximation, in the region occupied by the elastic 
material of the mountain rock, we look for the complex potentials 
Φ0(z) and Ψ0(z) in the following form (Panasyuk et al., 1966):
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that characterizes the opening of crack edges in zero 
approximation,
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By applying the functions (26)–(28) to the boundary condi-
tion (25) at the crack edge in the elastic zone, we obtain the 
singular integral equation for the unknown function g x1

0
1( ).

    R t x g t S t x g t dt F x x l
l

l

11 1
0

11 1
0

0 1

1

1

( , ) ( ) ( , ) ( ) ( )+



 = ≤

−
∫ π 	 (29)

where F x x x x x x x t z0 0
0

0
0

0
0

0
0

1
0( ) ( ) ( ) ( ) ( ) , , ,= − + + ′ +



Φ Φ Φ Ψ  

and l1 a0 are dimensionless quantities associated with; 
R11, S11 are determined using known formulas  
(see Panasyuk et al., 1976).

An additional condition should be added to equation (29).

	 g t dt
l

l

1
0

1

1

0
−
∫ =( ) 	 (30)

This ensures unambiguous displacement when going around 
the contour of the internal crack in the elastic zone of the 
material. 

The singular integral equation (29), with the additional 
condition (30), using the algebraization procedure (Panasyuk 
et al., 1976; Mirsalimov, 1987), is reduced to a system of M 
algebraic equations with respect to the approximate values 
g t m Mm1
0 1 2( ) =( ), ,...,  of the desired function at the nodal 

points:

	

1
1

1
1
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11 1 1
0

1
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11 1 1
0

M
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=
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

( ) ( , ) ( ) ( , ) ==

= F xr0
0( ) 	(31)
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1
0 1 2 1( ) , , ,...,= = −

=
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where:

	 t m
M

m M x r
M

r M
m r=

−
= =

= −

cos , ( , ,..., ), cos ,

( , ,..., ).

2 1
2

1 2

1 2 1

0π π

For stress intensity factors in the zero approximation, we 
find:
in the vicinity of the crack tip at t1 = l1

	 K iK l g t m
MI

l
II
l m

m
m

M
( ) ( ) ( ) ( )0 0

1 1
0

1

1 1 1 2 1
4

− = −
−

=
∑π πctg 	 (32)

in the vicinity of the crack tip at t1 = –l1

	 K iK l g t m
MI

l
II

l m M
m

m

M
( )( ) ( )( ) ( ) ( )0 0

1 1
0

1

1 1 1 2 1
4

− − +

=

− = −
−∑π πtg 	(33)

Using formulas (24) and (26), the stress components in the 
elastic zone are found in the zero approximation.

Knowing the stress state in the elastic zone in the zero ap-
proximation, we formally find the functions N and T according 
to relations (23).

The boundary conditions of the problem for determining the 
stress-strain state in the elastic zone in the first approximation 
(22), using complex Kolosov–Muskhelishvili potentials (24), 
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will be written in the following form:

Φ Φ Φ Ψ1 1
2

1 1 0( ) ( ) ( ) ( )z z e z z z N iT z a ei i+ − ′ +[ ] = − =θ θat 	(34)

Φ Φ Φ Ψ1 1 1 1 1 1 1 1 1 0( ) ( ) ( ) ( )t t t t t+ + ′ + =  at the edges of the crack.

The solution of the boundary value problem (34) is con-
structed similarly to the zero approximation:

	 Φ Φ Φ Ψ Ψ Ψ1 1
0

1
1

1 1
0

1
1( ) ( ) ( ), ( ) ( ) ( )z z z z z z= + = + 	 (35)

where the complex potentials Φ1(z), Ψ1(z) are determined by 
similar formulas (28), where the function g t1

0 ( ) should be 
replaced by the function g t1

1( ), and the analytical functions   
Φ1
0 ( )z and Ψ1

0 ( )z  are sought in the form of power series.
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For coefficients ak
1  and bk

1, we have:
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(37)

By satisfying the functions (35)–(36) to the boundary con-
dition (34) at the edges of the cracks in the elastic zone, and 
after some mathematical transformations, we get the following 
singular integral equation for the function g t1

1( ):
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where F x x x x x x x t z1 1
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and l1 are dimensionless values related to a0; R11, S11 
are determined using known formulas.

It is necessary to add an additional condition to equation (38)

	 g t dt
l

l

1
1

1

1

0
−
∫ =( ) 	 (39)

ensuring unambiguous movements when going around the 
contour of a crack in the elastic zone to the first approximation.

Similar to the zero approximation, the integral equa-
tion (38) under the additional condition (39) is reduced to 
a system of M algebraic equations for approximate values 
g t m Mm1
1 1 2( ), ( , ,..., )=  of the desired function at nodal points:
1
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	(40)

where:
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For the stress intensity coefficients in the vicinity of the 
crack tips, we find:
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It should be noted that in subsequent approximations, the 
solution of the problem for the elastic zone is constructed in 
a similar way.

The resulting system of equations (37), (40) is not yet 
closed. These equations include the unknown coefficients ak 
and bk of the expansion of the desired function H(θ), which 
describes the contour L of the interface between elastic and 
plastic deformations. To determine the coefficients ak, bk and 
to establish the missing equations, it is necessary to determine 
the normal circumferential stress σθ on contour L. We find the 
circumferential stress σθ on contour L using formulas (20), 
(24), (26), (35).

Based on the solution obtained, we find σθ up to first-order 
values relative to the small parameter   in the following form:

	 σ σ ε θ
σ

σθ θ
θ

θ
e

r a
r a

H
r

= +
∂
∂

+



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


=

=

0
0

1

0

0

( )
( )

( ) 	 (43)

Therefore, the function H(θ) must be defined in such a way 
that the additional condition (19) is satisfied on the contour L.

To construct the missing equations that allow us to find the 
coefficients a0, ak, bk of the expansion of the function ρ(θ), we 
use the principle of least squares. The circumferential stress  
σθ on the contour L is a function of the independent variable 
polar angle θ and (2m + 1) parameters a0, ak, bk (k = 1, 2, ..., m).

The unknown parameters a0, ak, bk are constant and must be 
determined. To find them, we carry out a series of calculations. 
We divide the segment [0, 2π] of the change in the variable θ 
into M1 parts, where M1 > 2m + 1:

	 θ θ θ θ π
j j

M
j M= + = =1

1
1

2 1 2∆ ∆, , ( , ,..., ) 	 (44)

We calculate the circumferential normal stress at the split-
ting points:

	 σ θ θθ
e

j j k kF a a b j M( ) ( , , , ), ( , ,..., )= =0 11 2 	 (45)

Thus, it is required to find such values of the unknown 
parameters a0, ak, bk that will best provide the values of the 
circumferential normal stress function σθ on L with σθ

1  values.
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The principle of least squares states that the most likely 
values of the parameters will be those for which the sum of 
squared deviations will be the smallest:

	 U F a a bj k k
p

j
j

M

= −  →
=
∑ ( , , , ) ( ) min.θ σ θθ0

2

1

1

Using the necessary condition for the extremum of a func-
tion U of several variables, we obtain (2m + 1) equations with 
(2m + 1) unknowns:

	 ∂
∂

=
∂
∂

=
∂
∂

= =
U
a

U
a

U
b

k m
k k0

0 0 0 1 2, , , ( , ,..., ) 	 (46)

The system of equations (46) closes the previously obtained 
systems (37), (40) of the problem.

A joint numerical solution of the resulting systems of alge-
braic equations makes it possible to find approximate values 
of the function g1(tm) (m = 1, 2, ..., M), stress intensity coeffi-
cients in the vicinity of the crack tips and coefficients a0, ak, bk  
(k = 1, 2, ..., m).

In real materials, in the vicinity of the crack tip there is 
always a zone in which plastic deformations occur. Various 
approaches are used to evaluate these plastic deformations. 
In the case of quasi-brittle fracture for such materials (for 
example, various rocks and low-plasticity metals), the well-
known Irvine–Orowan concept of quasi-brittle fracture is used. 
In this case, the plastic zone at the crack tip is taken into ac-
count by the Irwin correction. Irwin showed that the presence 
of ductility causes a crack to behave as if its length is longer 
than it actually is. The size of the plastic zone and the intensity 
of plastic deformations in it are entirely controlled by the stress 
intensity factor and the properties of the material. In this case, 
due to its smallness, it is recommended (or possible) not to 
introduce a plastic correction for plane deformation.

Numerical example

For the numerical calculation, the case of a crack in the 
elastic zone of the massif:

	 α
π

1
0 1

0
1
0

0
1230 0 07 1 2= = =; , ; ,l

a
z a e

i

was chosen. The calculation was performed using the Gaussian 
method with the choice of the principal element. M = 25, M1 = 82  

were assumed. The results of calculations for the coefficients 
a0, ak, bk of the expansion of the function ρ(θ) describing the 
elastoplastic boundary are given in Table 1, calculated for 
specific values of external loads at R = 2.

After solving the resulting algebraic systems, the stress 
intensity factors in the vicinity of the crack tips x l1 1= ±  in the 
elastic zone were found using the formulas:
at t1 = l1

K iK l g t g t ctg m
MI II

m
m m

m

M

− = − + 
−

=
∑π ε π1 1
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1
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1
1 2 1

4
( ) ( ) ( ) 	(47)

at t1 = –l1

K iK l g t g t m
MI II

m M
m m

m
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− = − + 
−+

=
∑π ε π1 1

0
1
1

1
1 2 1

4
( ) ( ) ( ) tg 	(48)

Figure 2 shows plots of the stress intensity factors KI and 
KII as a function of crack length l1 /a0.

By changing the values of the parameters α1 and z1
0 , 

which characterize the position of the crack, it is possible to 
study various cases of the location of a straight crack in the 
elastic zone and its influence on the interface between elas-
tic and plastic deformations and on the parameters of rock  
mass destruction.

Table 1. Fourier coefficients of the elastoplastic boundary
Tabela 1. Współczynniki Fouriera granicy sprężysto-plastycznej

N σ0 /k p /k C σσ x k∞∞ σσ y k∞∞ a0 a1 a2 b1 b2 b3

1 0.05 –1.12 –1.30 1.037 –0.344 –1.05 –1.57 1.074 0.640
2 –0.8 0.972 –1.18 –1.45 1.092 –0.078 –1.06 –1.093 1.058 0.089

Figure 2. Dependence of stress intensity factors on crack length
Rysunek 2. Zależność współczynników intensywności naprężeń 
od długości pęknięcia
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 Conclusions

An approximate method for solving the elastoplastic prob-
lem is proposed for the case when there is a straight crack in 
the elastic zone of the rock mass. A closed system of algebraic 
equations has been derived, the solution of which makes it pos-
sible to study the stressed state of the massif with full coverage 
of the mine workings by the plastic zone and in the presence 
of a crack in the elastic zone.

Given the mechanical and geometric characteristics of the 
rock mass, the obtained basic solution equations allow the use 
of numerical calculations to determine stress intensity factors. 
This facilitates the prediction of crack growth, as well as the 
determination of permissible level of defects in the rock mass 
and the limit values of external loads.
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